At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the given problem, we need to determine the area of the base of a cylindrical pillar, given the volume and height.
Here are the steps to find the solution:
1. Understand the Formula: We know that the volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = A \times h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( A \)[/tex] is the area of the base, and [tex]\( h \)[/tex] is the height.
2. Given Values: From the problem, we have:
[tex]\[ V = 324 \text{ cubic centimeters} \][/tex]
[tex]\[ h = 9 \text{ centimeters} \][/tex]
3. Rearrange the Formula: To find the area of the base [tex]\( A \)[/tex], we can rearrange the formula:
[tex]\[ A = \frac{V}{h} \][/tex]
4. Substitute the Given Values: Substitute the given volume and height into the formula:
[tex]\[ A = \frac{324}{9} \][/tex]
5. Calculate: Perform the division:
[tex]\[ A = 36 \text{ square centimeters} \][/tex]
Thus, the area of the base of the pillar is [tex]\( \boxed{36} \)[/tex] square centimeters.
Here are the steps to find the solution:
1. Understand the Formula: We know that the volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = A \times h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( A \)[/tex] is the area of the base, and [tex]\( h \)[/tex] is the height.
2. Given Values: From the problem, we have:
[tex]\[ V = 324 \text{ cubic centimeters} \][/tex]
[tex]\[ h = 9 \text{ centimeters} \][/tex]
3. Rearrange the Formula: To find the area of the base [tex]\( A \)[/tex], we can rearrange the formula:
[tex]\[ A = \frac{V}{h} \][/tex]
4. Substitute the Given Values: Substitute the given volume and height into the formula:
[tex]\[ A = \frac{324}{9} \][/tex]
5. Calculate: Perform the division:
[tex]\[ A = 36 \text{ square centimeters} \][/tex]
Thus, the area of the base of the pillar is [tex]\( \boxed{36} \)[/tex] square centimeters.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.