Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's simplify the given expression using the product rule for radicals.
The given expression is:
[tex]\[ \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \][/tex]
According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. We can apply this rule to our expression because both radicals have the same index (6th root).
First, identify the expressions under the radicals:
[tex]\[ a = \frac{x}{6}, \quad b = \frac{7}{y} \][/tex]
Now multiply these two expressions inside a single 6th root:
[tex]\[ \sqrt[6]{\left(\frac{x}{6}\right) \cdot \left(\frac{7}{y}\right)} \][/tex]
Next, we multiply the expressions inside the radical:
[tex]\[ \frac{x}{6} \cdot \frac{7}{y} = \frac{x \cdot 7}{6 \cdot y} = \frac{7x}{6y} \][/tex]
Thus, the simplified expression inside the 6th root is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Therefore, the simplified result of [tex]\( \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \)[/tex] is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
The given expression is:
[tex]\[ \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \][/tex]
According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. We can apply this rule to our expression because both radicals have the same index (6th root).
First, identify the expressions under the radicals:
[tex]\[ a = \frac{x}{6}, \quad b = \frac{7}{y} \][/tex]
Now multiply these two expressions inside a single 6th root:
[tex]\[ \sqrt[6]{\left(\frac{x}{6}\right) \cdot \left(\frac{7}{y}\right)} \][/tex]
Next, we multiply the expressions inside the radical:
[tex]\[ \frac{x}{6} \cdot \frac{7}{y} = \frac{x \cdot 7}{6 \cdot y} = \frac{7x}{6y} \][/tex]
Thus, the simplified expression inside the 6th root is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Therefore, the simplified result of [tex]\( \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \)[/tex] is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.