Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's simplify the given expression using the product rule for radicals.
The given expression is:
[tex]\[ \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \][/tex]
According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. We can apply this rule to our expression because both radicals have the same index (6th root).
First, identify the expressions under the radicals:
[tex]\[ a = \frac{x}{6}, \quad b = \frac{7}{y} \][/tex]
Now multiply these two expressions inside a single 6th root:
[tex]\[ \sqrt[6]{\left(\frac{x}{6}\right) \cdot \left(\frac{7}{y}\right)} \][/tex]
Next, we multiply the expressions inside the radical:
[tex]\[ \frac{x}{6} \cdot \frac{7}{y} = \frac{x \cdot 7}{6 \cdot y} = \frac{7x}{6y} \][/tex]
Thus, the simplified expression inside the 6th root is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Therefore, the simplified result of [tex]\( \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \)[/tex] is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
The given expression is:
[tex]\[ \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \][/tex]
According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. We can apply this rule to our expression because both radicals have the same index (6th root).
First, identify the expressions under the radicals:
[tex]\[ a = \frac{x}{6}, \quad b = \frac{7}{y} \][/tex]
Now multiply these two expressions inside a single 6th root:
[tex]\[ \sqrt[6]{\left(\frac{x}{6}\right) \cdot \left(\frac{7}{y}\right)} \][/tex]
Next, we multiply the expressions inside the radical:
[tex]\[ \frac{x}{6} \cdot \frac{7}{y} = \frac{x \cdot 7}{6 \cdot y} = \frac{7x}{6y} \][/tex]
Thus, the simplified expression inside the 6th root is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Therefore, the simplified result of [tex]\( \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \)[/tex] is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.