Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let’s go through each equation step-by-step to determine each of the requested properties of the parabolas.
##################
### Equation a ###
##################
### Given equation:
[tex]\[ x = \frac{1}{12} y^2 \][/tex]
A. If the parabola opens up, down, left, or right:
The given equation is in the form [tex]\( x = a(y - k)^2 + h \)[/tex]. Here, [tex]\( a = \frac{1}{12} \)[/tex], and since [tex]\( a \)[/tex] is positive, the parabola opens to the right.
B. The vertex of the parabola:
For the equation [tex]\( x = \frac{1}{12} y^2 \)[/tex], the vertex [tex]\( (h, k) \)[/tex] is [tex]\((0, 0)\)[/tex].
C. The location of the focus:
The focus of a parabola [tex]\( x = a(y - k)^2 + h \)[/tex] is located at [tex]\( \left(h + \frac{1}{4a}, k\right) \)[/tex]. Here [tex]\( a = \frac{1}{12} \)[/tex], so the focus is:
[tex]\[ \left(0 + \frac{1}{4 \times \frac{1}{12}}, 0\right) = \left(3, 0\right) \][/tex]
D. The equation of the directrix:
The directrix of a parabola [tex]\( x = a(y - k)^2 + h \)[/tex] has the equation [tex]\( x = h - \frac{1}{4a} \)[/tex]. Here [tex]\( a = \frac{1}{12} \)[/tex], so the equation of the directrix is:
[tex]\[ x = 0 - \frac{1}{4 \times \frac{1}{12}} = -3 \][/tex]
E. The equation of the axis of symmetry:
The axis of symmetry for the parabola [tex]\( x = a(y - k)^2 + h \)[/tex] is the line [tex]\( y = k \)[/tex]. Here [tex]\( k = 0 \)[/tex], so the equation of the axis of symmetry is:
[tex]\[ y = 0 \][/tex]
##################
### Equation b ###
##################
### Given equation:
[tex]\[ y - 2 = -\frac{1}{16} (x - 1)^2 \][/tex]
A. If the parabola opens up, down, left, or right:
The given equation is in the form [tex]\( y - k = a(x - h)^2 \)[/tex]. Here, [tex]\( a = -\frac{1}{16} \)[/tex], and since [tex]\( a \)[/tex] is negative, the parabola opens downwards.
B. The vertex of the parabola:
For the equation [tex]\( y - 2 = -\frac{1}{16}(x - 1)^2 \)[/tex], the vertex [tex]\( (h, k) \)[/tex] is [tex]\((1, 2)\)[/tex].
C. The location of the focus:
The focus of a parabola [tex]\( y - k = a(x - h)^2 \)[/tex] is located at [tex]\( \left(h, k + \frac{1}{4a}\right) \)[/tex]. Here [tex]\( a = -\frac{1}{16} \)[/tex], so the focus is:
[tex]\[ \left(1, 2 + \frac{1}{4 \times -\frac{1}{16}} \right) = \left(1, 6\right) \][/tex]
D. The equation of the directrix:
The directrix of a parabola [tex]\( y - k = a(x - h)^2 \)[/tex] has the equation [tex]\( y = k - \frac{1}{4a} \)[/tex]. Here [tex]\( a = -\frac{1}{16} \)[/tex], so the equation of the directrix is:
[tex]\[ y = 2 - \frac{1}{4 \times -\frac{1}{16}} = -2 \][/tex]
E. The equation of the axis of symmetry:
The axis of symmetry for the parabola [tex]\( y - k = a(x - h)^2 \)[/tex] is the line [tex]\( x = h \)[/tex]. Here [tex]\( h = 1 \)[/tex], so the equation of the axis of symmetry is:
[tex]\[ x = 1 \][/tex]
### Summary:
For equation [tex]\( a \)[/tex]:
A. Opens right
B. Vertex at [tex]\((0, 0)\)[/tex]
C. Focus at [tex]\((3, 0)\)[/tex]
D. Directrix: [tex]\(x = -3\)[/tex]
E. Axis of symmetry: [tex]\(y = 0\)[/tex]
For equation [tex]\( b \)[/tex]:
A. Opens down
B. Vertex at [tex]\((1, 2)\)[/tex]
C. Focus at [tex]\((1, 6)\)[/tex]
D. Directrix: [tex]\(y = -2\)[/tex]
E. Axis of symmetry: [tex]\(x = 1\)[/tex]
##################
### Equation a ###
##################
### Given equation:
[tex]\[ x = \frac{1}{12} y^2 \][/tex]
A. If the parabola opens up, down, left, or right:
The given equation is in the form [tex]\( x = a(y - k)^2 + h \)[/tex]. Here, [tex]\( a = \frac{1}{12} \)[/tex], and since [tex]\( a \)[/tex] is positive, the parabola opens to the right.
B. The vertex of the parabola:
For the equation [tex]\( x = \frac{1}{12} y^2 \)[/tex], the vertex [tex]\( (h, k) \)[/tex] is [tex]\((0, 0)\)[/tex].
C. The location of the focus:
The focus of a parabola [tex]\( x = a(y - k)^2 + h \)[/tex] is located at [tex]\( \left(h + \frac{1}{4a}, k\right) \)[/tex]. Here [tex]\( a = \frac{1}{12} \)[/tex], so the focus is:
[tex]\[ \left(0 + \frac{1}{4 \times \frac{1}{12}}, 0\right) = \left(3, 0\right) \][/tex]
D. The equation of the directrix:
The directrix of a parabola [tex]\( x = a(y - k)^2 + h \)[/tex] has the equation [tex]\( x = h - \frac{1}{4a} \)[/tex]. Here [tex]\( a = \frac{1}{12} \)[/tex], so the equation of the directrix is:
[tex]\[ x = 0 - \frac{1}{4 \times \frac{1}{12}} = -3 \][/tex]
E. The equation of the axis of symmetry:
The axis of symmetry for the parabola [tex]\( x = a(y - k)^2 + h \)[/tex] is the line [tex]\( y = k \)[/tex]. Here [tex]\( k = 0 \)[/tex], so the equation of the axis of symmetry is:
[tex]\[ y = 0 \][/tex]
##################
### Equation b ###
##################
### Given equation:
[tex]\[ y - 2 = -\frac{1}{16} (x - 1)^2 \][/tex]
A. If the parabola opens up, down, left, or right:
The given equation is in the form [tex]\( y - k = a(x - h)^2 \)[/tex]. Here, [tex]\( a = -\frac{1}{16} \)[/tex], and since [tex]\( a \)[/tex] is negative, the parabola opens downwards.
B. The vertex of the parabola:
For the equation [tex]\( y - 2 = -\frac{1}{16}(x - 1)^2 \)[/tex], the vertex [tex]\( (h, k) \)[/tex] is [tex]\((1, 2)\)[/tex].
C. The location of the focus:
The focus of a parabola [tex]\( y - k = a(x - h)^2 \)[/tex] is located at [tex]\( \left(h, k + \frac{1}{4a}\right) \)[/tex]. Here [tex]\( a = -\frac{1}{16} \)[/tex], so the focus is:
[tex]\[ \left(1, 2 + \frac{1}{4 \times -\frac{1}{16}} \right) = \left(1, 6\right) \][/tex]
D. The equation of the directrix:
The directrix of a parabola [tex]\( y - k = a(x - h)^2 \)[/tex] has the equation [tex]\( y = k - \frac{1}{4a} \)[/tex]. Here [tex]\( a = -\frac{1}{16} \)[/tex], so the equation of the directrix is:
[tex]\[ y = 2 - \frac{1}{4 \times -\frac{1}{16}} = -2 \][/tex]
E. The equation of the axis of symmetry:
The axis of symmetry for the parabola [tex]\( y - k = a(x - h)^2 \)[/tex] is the line [tex]\( x = h \)[/tex]. Here [tex]\( h = 1 \)[/tex], so the equation of the axis of symmetry is:
[tex]\[ x = 1 \][/tex]
### Summary:
For equation [tex]\( a \)[/tex]:
A. Opens right
B. Vertex at [tex]\((0, 0)\)[/tex]
C. Focus at [tex]\((3, 0)\)[/tex]
D. Directrix: [tex]\(x = -3\)[/tex]
E. Axis of symmetry: [tex]\(y = 0\)[/tex]
For equation [tex]\( b \)[/tex]:
A. Opens down
B. Vertex at [tex]\((1, 2)\)[/tex]
C. Focus at [tex]\((1, 6)\)[/tex]
D. Directrix: [tex]\(y = -2\)[/tex]
E. Axis of symmetry: [tex]\(x = 1\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.