Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Use the product rule to multiply.

[tex]\[
\sqrt[7]{4 x^2 y} \cdot \sqrt[7]{12 x^4 y^4}
\][/tex]

Simplify your answer. Type an exact answer, using radicals as needed.


Sagot :

To solve the expression [tex]\(\sqrt[7]{4 x^2 y} \cdot \sqrt[7]{12 x^4 y^4}\)[/tex] using the product rule for radicals, we can follow these steps:

1. Combine the radicals under a common radical expression.

According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. For our specific case:
[tex]\[ \sqrt[7]{4 x^2 y} \cdot \sqrt[7]{12 x^4 y^4} = \sqrt[7]{(4 x^2 y) \cdot (12 x^4 y^4)} \][/tex]

2. Multiply the expressions inside the radical.

First, multiply the constants:
[tex]\[ 4 \cdot 12 = 48 \][/tex]

Next, multiply the variables by adding their exponents, as per the rules of exponents when multiplying like bases.

For [tex]\(x\)[/tex]:
[tex]\[ x^2 \cdot x^4 = x^{2+4} = x^6 \][/tex]

For [tex]\(y\)[/tex]:
[tex]\[ y \cdot y^4 = y^{1+4} = y^5 \][/tex]

So, we combine everything together:
[tex]\[ (4 x^2 y) \cdot (12 x^4 y^4) = 48 x^6 y^5 \][/tex]

3. Write the result under a single radical.

Therefore, the combined expression under the seventh root is:
[tex]\[ \sqrt[7]{48 x^6 y^5} \][/tex]

Putting it all together, the simplified expression is:
[tex]\[ \sqrt[7]{4 x^2 y} \cdot \sqrt[7]{12 x^4 y^4} = \sqrt[7]{48 x^6 y^5} \][/tex]

This is the final answer.