Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the particular solution of the given differential equation with initial conditions, follow these steps:
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.