Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the particular solution of the given differential equation with initial conditions, follow these steps:
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
### Given Problem
The differential equation is:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \][/tex]
### Initial Conditions
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y(0) = 0 \][/tex]
[tex]\[ \frac{d y}{d x}\bigg|_{x=0} = -\frac{4}{3} \][/tex]
### Step-by-Step Solution
1. Formulate the Homogeneous Equation:
First, solve the corresponding homogeneous equation:
[tex]\[ 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 0 \][/tex]
2. Solve for Characteristic Equation:
Convert the homogeneous differential equation into its characteristic equation by assuming a solution of the form [tex]\( y = e^{rx} \)[/tex]:
[tex]\[ 9r^2 - 12r + 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12 \pm 0}{18} = \frac{2}{3} \][/tex]
Since both roots are [tex]\( \frac{2}{3} \)[/tex], the general solution to the homogeneous equation is:
[tex]\[ y_h(x) = (C_1 + C_2 x) e^{2x/3} \][/tex]
4. Formulate the Particular Solution:
Find a particular solution [tex]\( y_p(x) \)[/tex] to the non-homogeneous equation. Assume a particular solution of the form:
[tex]\[ y_p(x) = Ax + B \][/tex]
Substitute [tex]\( y_p \)[/tex] and its derivatives into the original differential equation:
[tex]\[ 9(0) - 12(A) + 4(Ax + B) = 3x - 1 \implies 4Ax + 4B - 12A = 3x - 1 \][/tex]
Comparing coefficients:
[tex]\[ 4A = 3 \quad \Rightarrow \quad A = \frac{3}{4} \][/tex]
[tex]\[ 4B - 12A = -1 \quad \Rightarrow \quad B = 2 \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = \frac{3}{4}x + 2 \][/tex]
5. Combine Solutions:
The general solution of the differential equation is:
[tex]\[ y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x) e^{2x/3} + \frac{3}{4}x + 2 \][/tex]
6. Apply Initial Conditions:
Use the initial conditions to solve for [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]:
[tex]\[ y(0) = 0 \quad \Rightarrow \quad C_1 e^0 + 2 = 0 \quad \Rightarrow \quad C_1 + 2 = 0 \quad \Rightarrow \quad C_1 = -2 \][/tex]
The derivative of [tex]\( y(x) \)[/tex] is:
[tex]\[ y'(x) = \left(C_2 e^{2x/3} + \frac{2}{3}(C_1 + C_2 x)e^{2x/3}\right) + \frac{3}{4} \][/tex]
At [tex]\( x = 0 \)[/tex]:
[tex]\[ y'(0) = C_2 + \frac{2}{3}C_1 + \frac{3}{4} = -\frac{4}{3} \][/tex]
Substituting [tex]\( C_1 = -2 \)[/tex]:
[tex]\[ C_2 + \frac{2}{3}(-2) + \frac{3}{4} = -\frac{4}{3} \][/tex]
[tex]\[ C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{4}{3} + \frac{3}{4} = -\frac{4}{3} \quad \Rightarrow \quad C_2 - \frac{1}{12} = -\frac{4}{3} \quad \Rightarrow \quad C_2 = -\frac{4}{3} + \frac{1}{12} \][/tex]
[tex]\[ C_2 = -\frac{16}{12} + \frac{1}{12} = -\frac{15}{12} = -1.25 \][/tex]
7. Particular Solution:
Thus, the particular solution of the differential equation is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
So, the particular solution of the differential equation [tex]\( 9 \frac{d^2 y}{d x^2} - 12 \frac{d y}{d x} + 4 y = 3 x - 1 \)[/tex] given the initial conditions is:
[tex]\[ y(x) = \frac{3}{4}x + (-0.75x - 2.0)e^{2x/3} + 2 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.