Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct probability distribution [tex]\( P_X(X) \)[/tex] for the number of times blue occurs when the spinner is spun twice, follow these steps:
1. Identify the Possible Outcomes:
The possible outcomes when the spinner is spun twice are:
[tex]\[ S = \{RR, RB, BR, BB\} \][/tex]
Here, each outcome represents the result of two spins:
- [tex]\( RR \)[/tex]: Red on both spins
- [tex]\( RB \)[/tex]: Red on the first spin and Blue on the second spin
- [tex]\( BR \)[/tex]: Blue on the first spin and Red on the second spin
- [tex]\( BB \)[/tex]: Blue on both spins
2. Define the Random Variable [tex]\( X \)[/tex]:
Let [tex]\( X \)[/tex] be the number of times blue occurs in two spins.
3. Determine the Values of [tex]\( X \)[/tex]:
The possible values for [tex]\( X \)[/tex] are 0, 1, or 2.
- [tex]\( X = 0 \)[/tex] means no blue outcomes.
- [tex]\( X = 1 \)[/tex] means one blue outcome.
- [tex]\( X = 2 \)[/tex] means two blue outcomes.
4. Count the Outcomes for Each Value of [tex]\( X \)[/tex]:
- [tex]\( X = 0 \)[/tex]: The outcome is [tex]\( RR \)[/tex]. There is 1 such outcome.
- [tex]\( X = 1 \)[/tex]: The outcomes are [tex]\( RB \)[/tex] and [tex]\( BR \)[/tex]. There are 2 such outcomes.
- [tex]\( X = 2 \)[/tex]: The outcome is [tex]\( BB \)[/tex]. There is 1 such outcome.
5. Calculate the Probability for Each Value of [tex]\( X \)[/tex]:
Each outcome is equally likely, and there are 4 possible outcomes in total.
- For [tex]\( X = 0 \)[/tex]:
[tex]\[ P_X(0) = \frac{\text{Number of outcomes with } X = 0}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
- For [tex]\( X = 1 \)[/tex]:
[tex]\[ P_X(1) = \frac{\text{Number of outcomes with } X = 1}{\text{Total outcomes}} = \frac{2}{4} = 0.5 \][/tex]
- For [tex]\( X = 2 \)[/tex]:
[tex]\[ P_X(2) = \frac{\text{Number of outcomes with } X = 2}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
6. Construct the Probability Distribution Table:
Based on the calculations, the probability distribution [tex]\( P_X(X) \)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(X) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
Hence, the correct probability distribution, [tex]\( P_X(X) \)[/tex], is given by the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & P_{X}(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
1. Identify the Possible Outcomes:
The possible outcomes when the spinner is spun twice are:
[tex]\[ S = \{RR, RB, BR, BB\} \][/tex]
Here, each outcome represents the result of two spins:
- [tex]\( RR \)[/tex]: Red on both spins
- [tex]\( RB \)[/tex]: Red on the first spin and Blue on the second spin
- [tex]\( BR \)[/tex]: Blue on the first spin and Red on the second spin
- [tex]\( BB \)[/tex]: Blue on both spins
2. Define the Random Variable [tex]\( X \)[/tex]:
Let [tex]\( X \)[/tex] be the number of times blue occurs in two spins.
3. Determine the Values of [tex]\( X \)[/tex]:
The possible values for [tex]\( X \)[/tex] are 0, 1, or 2.
- [tex]\( X = 0 \)[/tex] means no blue outcomes.
- [tex]\( X = 1 \)[/tex] means one blue outcome.
- [tex]\( X = 2 \)[/tex] means two blue outcomes.
4. Count the Outcomes for Each Value of [tex]\( X \)[/tex]:
- [tex]\( X = 0 \)[/tex]: The outcome is [tex]\( RR \)[/tex]. There is 1 such outcome.
- [tex]\( X = 1 \)[/tex]: The outcomes are [tex]\( RB \)[/tex] and [tex]\( BR \)[/tex]. There are 2 such outcomes.
- [tex]\( X = 2 \)[/tex]: The outcome is [tex]\( BB \)[/tex]. There is 1 such outcome.
5. Calculate the Probability for Each Value of [tex]\( X \)[/tex]:
Each outcome is equally likely, and there are 4 possible outcomes in total.
- For [tex]\( X = 0 \)[/tex]:
[tex]\[ P_X(0) = \frac{\text{Number of outcomes with } X = 0}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
- For [tex]\( X = 1 \)[/tex]:
[tex]\[ P_X(1) = \frac{\text{Number of outcomes with } X = 1}{\text{Total outcomes}} = \frac{2}{4} = 0.5 \][/tex]
- For [tex]\( X = 2 \)[/tex]:
[tex]\[ P_X(2) = \frac{\text{Number of outcomes with } X = 2}{\text{Total outcomes}} = \frac{1}{4} = 0.25 \][/tex]
6. Construct the Probability Distribution Table:
Based on the calculations, the probability distribution [tex]\( P_X(X) \)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(X) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
Hence, the correct probability distribution, [tex]\( P_X(X) \)[/tex], is given by the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & P_{X}(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.