Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the differential equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
with initial conditions
[tex]\[ y(0) = 0 \quad \text{and} \quad \frac{d y}{d x}\Big|_{x = 0} = 0, \][/tex]
we'll proceed with the following steps:
### Step 1: Find the general solution of the homogeneous equation
Consider the homogeneous version of the given differential equation:
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 0. \][/tex]
To solve this, we assume a solution of the form [tex]\( y = e^{mx} \)[/tex]. Substituting [tex]\( y = e^{mx} \)[/tex] into the homogeneous equation, we get:
[tex]\[ 3m^2 e^{mx} + m e^{mx} - 4e^{mx} = 0. \][/tex]
Dividing through by [tex]\( e^{mx} \)[/tex] (which is never zero), we obtain:
[tex]\[ 3m^2 + m - 4 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( m \)[/tex]. To solve for [tex]\( m \)[/tex], we use the quadratic formula [tex]\( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -4 \)[/tex]:
[tex]\[ m = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} = \frac{-1 \pm \sqrt{1 + 48}}{6} = \frac{-1 \pm \sqrt{49}}{6} = \frac{-1 \pm 7}{6}. \][/tex]
Thus, the roots are:
[tex]\[ m = \frac{6}{6} = 1 \quad \text{and} \quad m = \frac{-8}{6} = -\frac{4}{3}. \][/tex]
The general solution to the homogeneous equation is then:
[tex]\[ y_h(x) = C_1 e^{x} + C_2 e^{-4x/3}. \][/tex]
### Step 2: Find a particular solution to the inhomogeneous equation
To find a particular solution [tex]\( y_p(x) \)[/tex] of the inhomogeneous equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
we can try a constant solution [tex]\( y_p = k \)[/tex]. Substituting [tex]\( y_p = k \)[/tex] into the differential equation, we get:
[tex]\[ 3 \cdot 0 + 0 - 4k = 8, \][/tex]
which simplifies to:
[tex]\[ -4k = 8 \quad \Rightarrow \quad k = -2. \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = -2. \][/tex]
### Step 3: Form the general solution of the full differential equation
The general solution of the full differential equation is then the sum of the homogeneous solution and the particular solution:
[tex]\[ y(x) = C_1 e^{x} + C_2 e^{-4x/3} - 2. \][/tex]
### Step 4: Apply the initial conditions to find [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]
We use the initial conditions [tex]\( y(0) = 0 \)[/tex] and [tex]\( y'(0) = 0 \)[/tex].
1. Applying [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = C_1 e^{0} + C_2 e^{0} - 2 = C_1 + C_2 - 2. \][/tex]
[tex]\[ C_1 + C_2 = 2. \][/tex]
2. Applying [tex]\( y'(0) = 0 \)[/tex]:
First, find [tex]\( y'(x) \)[/tex]:
[tex]\[ y'(x) = C_1 e^{x} - \frac{4}{3} C_2 e^{-4x/3}. \][/tex]
Then:
[tex]\[ 0 = C_1 e^{0} - \frac{4}{3} C_2 e^{0} = C_1 - \frac{4}{3} C_2. \][/tex]
Solving these two equations simultaneously:
[tex]\[ C_1 + C_2 = 2, \][/tex]
[tex]\[ C_1 - \frac{4}{3} C_2 = 0. \][/tex]
From the second equation:
[tex]\[ C_1 = \frac{4}{3} C_2. \][/tex]
Substitute this into the first equation:
[tex]\[ \frac{4}{3} C_2 + C_2 = 2, \][/tex]
[tex]\[ \frac{7}{3} C_2 = 2, \][/tex]
[tex]\[ C_2 = \frac{6}{7}. \][/tex]
Then:
[tex]\[ C_1 = \frac{4}{3} \cdot \frac{6}{7} = \frac{8}{7}. \][/tex]
### Step 5: Write the particular solution
Substituting [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex] back into the general solution, we obtain the particular solution:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
So, the particular solution to the differential equation with the given initial conditions is:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
with initial conditions
[tex]\[ y(0) = 0 \quad \text{and} \quad \frac{d y}{d x}\Big|_{x = 0} = 0, \][/tex]
we'll proceed with the following steps:
### Step 1: Find the general solution of the homogeneous equation
Consider the homogeneous version of the given differential equation:
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 0. \][/tex]
To solve this, we assume a solution of the form [tex]\( y = e^{mx} \)[/tex]. Substituting [tex]\( y = e^{mx} \)[/tex] into the homogeneous equation, we get:
[tex]\[ 3m^2 e^{mx} + m e^{mx} - 4e^{mx} = 0. \][/tex]
Dividing through by [tex]\( e^{mx} \)[/tex] (which is never zero), we obtain:
[tex]\[ 3m^2 + m - 4 = 0. \][/tex]
This is a quadratic equation in terms of [tex]\( m \)[/tex]. To solve for [tex]\( m \)[/tex], we use the quadratic formula [tex]\( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -4 \)[/tex]:
[tex]\[ m = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} = \frac{-1 \pm \sqrt{1 + 48}}{6} = \frac{-1 \pm \sqrt{49}}{6} = \frac{-1 \pm 7}{6}. \][/tex]
Thus, the roots are:
[tex]\[ m = \frac{6}{6} = 1 \quad \text{and} \quad m = \frac{-8}{6} = -\frac{4}{3}. \][/tex]
The general solution to the homogeneous equation is then:
[tex]\[ y_h(x) = C_1 e^{x} + C_2 e^{-4x/3}. \][/tex]
### Step 2: Find a particular solution to the inhomogeneous equation
To find a particular solution [tex]\( y_p(x) \)[/tex] of the inhomogeneous equation
[tex]\[ 3 \frac{d^2 y}{d x^2} + \frac{d y}{d x} - 4 y = 8, \][/tex]
we can try a constant solution [tex]\( y_p = k \)[/tex]. Substituting [tex]\( y_p = k \)[/tex] into the differential equation, we get:
[tex]\[ 3 \cdot 0 + 0 - 4k = 8, \][/tex]
which simplifies to:
[tex]\[ -4k = 8 \quad \Rightarrow \quad k = -2. \][/tex]
Thus, the particular solution is:
[tex]\[ y_p(x) = -2. \][/tex]
### Step 3: Form the general solution of the full differential equation
The general solution of the full differential equation is then the sum of the homogeneous solution and the particular solution:
[tex]\[ y(x) = C_1 e^{x} + C_2 e^{-4x/3} - 2. \][/tex]
### Step 4: Apply the initial conditions to find [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex]
We use the initial conditions [tex]\( y(0) = 0 \)[/tex] and [tex]\( y'(0) = 0 \)[/tex].
1. Applying [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = C_1 e^{0} + C_2 e^{0} - 2 = C_1 + C_2 - 2. \][/tex]
[tex]\[ C_1 + C_2 = 2. \][/tex]
2. Applying [tex]\( y'(0) = 0 \)[/tex]:
First, find [tex]\( y'(x) \)[/tex]:
[tex]\[ y'(x) = C_1 e^{x} - \frac{4}{3} C_2 e^{-4x/3}. \][/tex]
Then:
[tex]\[ 0 = C_1 e^{0} - \frac{4}{3} C_2 e^{0} = C_1 - \frac{4}{3} C_2. \][/tex]
Solving these two equations simultaneously:
[tex]\[ C_1 + C_2 = 2, \][/tex]
[tex]\[ C_1 - \frac{4}{3} C_2 = 0. \][/tex]
From the second equation:
[tex]\[ C_1 = \frac{4}{3} C_2. \][/tex]
Substitute this into the first equation:
[tex]\[ \frac{4}{3} C_2 + C_2 = 2, \][/tex]
[tex]\[ \frac{7}{3} C_2 = 2, \][/tex]
[tex]\[ C_2 = \frac{6}{7}. \][/tex]
Then:
[tex]\[ C_1 = \frac{4}{3} \cdot \frac{6}{7} = \frac{8}{7}. \][/tex]
### Step 5: Write the particular solution
Substituting [tex]\( C_1 \)[/tex] and [tex]\( C_2 \)[/tex] back into the general solution, we obtain the particular solution:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
So, the particular solution to the differential equation with the given initial conditions is:
[tex]\[ y(x) = \frac{8}{7} e^{x} + \frac{6}{7} e^{-4x/3} - 2. \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.