Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A mass on a spring with [tex]k = 88.7 \, \text{N/m}[/tex] oscillates 15.0 times in 9.24 seconds. What is the object's mass? (Unit: [tex]kg[/tex])

Sagot :

To find the mass of the object attached to the spring, we follow these steps:

### Step 1: Calculate the Period of Oscillations

The period [tex]\( T \)[/tex] is the time taken for one complete oscillation. Given:

- The total number of oscillations [tex]\( N \)[/tex] = 15.0
- The total time [tex]\( t \)[/tex] = 9.24 seconds

The period [tex]\( T \)[/tex] is given by:

[tex]\[ T = \frac{t}{N} \][/tex]

Substituting the given values:

[tex]\[ T = \frac{9.24 \, \text{s}}{15.0} = 0.616 \, \text{s} \][/tex]

### Step 2: Find the Angular Frequency [tex]\( \omega \)[/tex]

The angular frequency [tex]\( \omega \)[/tex] is related to the period [tex]\( T \)[/tex] by the formula:

[tex]\[ \omega = \frac{2 \pi}{T} \][/tex]

Using the calculated period [tex]\( T = 0.616 \, \text{s} \)[/tex]:

[tex]\[ \omega = \frac{2 \pi}{0.616 \, \text{s}} = 10.19997614801881 \, \text{rad/s} \][/tex]

### Step 3: Use the Angular Frequency to Find the Mass

The relationship between the angular frequency [tex]\( \omega \)[/tex], the spring constant [tex]\( k \)[/tex], and the mass [tex]\( m \)[/tex] is given by:

[tex]\[ \omega = \sqrt{\frac{k}{m}} \][/tex]

Rearranging this equation to solve for [tex]\( m \)[/tex]:

[tex]\[ m = \frac{k}{\omega^2} \][/tex]

Given the spring constant [tex]\( k = 88.7 \, \text{N/m} \)[/tex] and the calculated angular frequency [tex]\( \omega = 10.19997614801881 \, \text{rad/s} \)[/tex]:

[tex]\[ m = \frac{88.7 \, \text{N/m}}{(10.19997614801881 \, \text{rad/s})^2} \][/tex]

[tex]\[ m = 0.8525606962596449 \, \text{kg} \][/tex]

### Conclusion

The mass of the object is:

[tex]\[ m \approx 0.853 \, \text{kg} \][/tex]

Thus, the object's mass is approximately 0.853 kg.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.