Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the mass of the object attached to the spring, we follow these steps:
### Step 1: Calculate the Period of Oscillations
The period [tex]\( T \)[/tex] is the time taken for one complete oscillation. Given:
- The total number of oscillations [tex]\( N \)[/tex] = 15.0
- The total time [tex]\( t \)[/tex] = 9.24 seconds
The period [tex]\( T \)[/tex] is given by:
[tex]\[ T = \frac{t}{N} \][/tex]
Substituting the given values:
[tex]\[ T = \frac{9.24 \, \text{s}}{15.0} = 0.616 \, \text{s} \][/tex]
### Step 2: Find the Angular Frequency [tex]\( \omega \)[/tex]
The angular frequency [tex]\( \omega \)[/tex] is related to the period [tex]\( T \)[/tex] by the formula:
[tex]\[ \omega = \frac{2 \pi}{T} \][/tex]
Using the calculated period [tex]\( T = 0.616 \, \text{s} \)[/tex]:
[tex]\[ \omega = \frac{2 \pi}{0.616 \, \text{s}} = 10.19997614801881 \, \text{rad/s} \][/tex]
### Step 3: Use the Angular Frequency to Find the Mass
The relationship between the angular frequency [tex]\( \omega \)[/tex], the spring constant [tex]\( k \)[/tex], and the mass [tex]\( m \)[/tex] is given by:
[tex]\[ \omega = \sqrt{\frac{k}{m}} \][/tex]
Rearranging this equation to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{\omega^2} \][/tex]
Given the spring constant [tex]\( k = 88.7 \, \text{N/m} \)[/tex] and the calculated angular frequency [tex]\( \omega = 10.19997614801881 \, \text{rad/s} \)[/tex]:
[tex]\[ m = \frac{88.7 \, \text{N/m}}{(10.19997614801881 \, \text{rad/s})^2} \][/tex]
[tex]\[ m = 0.8525606962596449 \, \text{kg} \][/tex]
### Conclusion
The mass of the object is:
[tex]\[ m \approx 0.853 \, \text{kg} \][/tex]
Thus, the object's mass is approximately 0.853 kg.
### Step 1: Calculate the Period of Oscillations
The period [tex]\( T \)[/tex] is the time taken for one complete oscillation. Given:
- The total number of oscillations [tex]\( N \)[/tex] = 15.0
- The total time [tex]\( t \)[/tex] = 9.24 seconds
The period [tex]\( T \)[/tex] is given by:
[tex]\[ T = \frac{t}{N} \][/tex]
Substituting the given values:
[tex]\[ T = \frac{9.24 \, \text{s}}{15.0} = 0.616 \, \text{s} \][/tex]
### Step 2: Find the Angular Frequency [tex]\( \omega \)[/tex]
The angular frequency [tex]\( \omega \)[/tex] is related to the period [tex]\( T \)[/tex] by the formula:
[tex]\[ \omega = \frac{2 \pi}{T} \][/tex]
Using the calculated period [tex]\( T = 0.616 \, \text{s} \)[/tex]:
[tex]\[ \omega = \frac{2 \pi}{0.616 \, \text{s}} = 10.19997614801881 \, \text{rad/s} \][/tex]
### Step 3: Use the Angular Frequency to Find the Mass
The relationship between the angular frequency [tex]\( \omega \)[/tex], the spring constant [tex]\( k \)[/tex], and the mass [tex]\( m \)[/tex] is given by:
[tex]\[ \omega = \sqrt{\frac{k}{m}} \][/tex]
Rearranging this equation to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{\omega^2} \][/tex]
Given the spring constant [tex]\( k = 88.7 \, \text{N/m} \)[/tex] and the calculated angular frequency [tex]\( \omega = 10.19997614801881 \, \text{rad/s} \)[/tex]:
[tex]\[ m = \frac{88.7 \, \text{N/m}}{(10.19997614801881 \, \text{rad/s})^2} \][/tex]
[tex]\[ m = 0.8525606962596449 \, \text{kg} \][/tex]
### Conclusion
The mass of the object is:
[tex]\[ m \approx 0.853 \, \text{kg} \][/tex]
Thus, the object's mass is approximately 0.853 kg.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.