Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

A truck has shock absorbers with a spring constant of [tex]$24200 \, \text{N/m}$[/tex]. When it hits a bump, it oscillates at [tex]$0.429 \, \text{Hz}$[/tex]. What is the mass of the truck?

(Unit [tex]= \text{kg}[/tex])


Sagot :

Let’s determine the mass of the truck using the given information: the spring constant ([tex]\(k\)[/tex]) and the frequency ([tex]\(f\)[/tex]) of oscillation.

### Step-by-Step Solution:

1. Understand the Relationship:

The relationship between the spring constant, frequency, and mass in a harmonic oscillator is given by:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
where:
- [tex]\( f \)[/tex] is the frequency,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).

2. Rearrange the Formula to Solve for Mass ([tex]\(m\)[/tex]):

Starting with the equation:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
Rearrange it to solve for the mass [tex]\( m \)[/tex] as follows:
[tex]\[ f \times 2 \pi = \sqrt{\frac{k}{m}} \][/tex]
[tex]\[ (f \times 2 \pi)^2 = \frac{k}{m} \][/tex]
[tex]\[ m = \frac{k}{(f \times 2 \pi)^2} \][/tex]

3. Calculate the Intermediate Values:

Calculate the value of [tex]\( 2 \pi f \)[/tex]:
[tex]\[ 2 \pi f = 2 \times 3.141592653589793 \times 0.429 \approx 2.6965336943312392 \][/tex]

Next, square this result:
[tex]\[ (2 \pi f)^2 = (2.6965336943312392)^2 \approx 7.2656474543235445 \][/tex]

4. Compute the Mass ([tex]\(m\)[/tex]):

Now, use the spring constant [tex]\( k \)[/tex] and the squared frequency calculated above to find the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{(2 \pi f)^2} = \frac{24200}{7.2656474543235445} \approx 3330.742394554168 \][/tex]

### Conclusion:

The mass of the truck is approximately [tex]\( 3330.742 \, \text{kg} \)[/tex].