Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let’s determine the mass of the truck using the given information: the spring constant ([tex]\(k\)[/tex]) and the frequency ([tex]\(f\)[/tex]) of oscillation.
### Step-by-Step Solution:
1. Understand the Relationship:
The relationship between the spring constant, frequency, and mass in a harmonic oscillator is given by:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
where:
- [tex]\( f \)[/tex] is the frequency,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
2. Rearrange the Formula to Solve for Mass ([tex]\(m\)[/tex]):
Starting with the equation:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
Rearrange it to solve for the mass [tex]\( m \)[/tex] as follows:
[tex]\[ f \times 2 \pi = \sqrt{\frac{k}{m}} \][/tex]
[tex]\[ (f \times 2 \pi)^2 = \frac{k}{m} \][/tex]
[tex]\[ m = \frac{k}{(f \times 2 \pi)^2} \][/tex]
3. Calculate the Intermediate Values:
Calculate the value of [tex]\( 2 \pi f \)[/tex]:
[tex]\[ 2 \pi f = 2 \times 3.141592653589793 \times 0.429 \approx 2.6965336943312392 \][/tex]
Next, square this result:
[tex]\[ (2 \pi f)^2 = (2.6965336943312392)^2 \approx 7.2656474543235445 \][/tex]
4. Compute the Mass ([tex]\(m\)[/tex]):
Now, use the spring constant [tex]\( k \)[/tex] and the squared frequency calculated above to find the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{(2 \pi f)^2} = \frac{24200}{7.2656474543235445} \approx 3330.742394554168 \][/tex]
### Conclusion:
The mass of the truck is approximately [tex]\( 3330.742 \, \text{kg} \)[/tex].
### Step-by-Step Solution:
1. Understand the Relationship:
The relationship between the spring constant, frequency, and mass in a harmonic oscillator is given by:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
where:
- [tex]\( f \)[/tex] is the frequency,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
2. Rearrange the Formula to Solve for Mass ([tex]\(m\)[/tex]):
Starting with the equation:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
Rearrange it to solve for the mass [tex]\( m \)[/tex] as follows:
[tex]\[ f \times 2 \pi = \sqrt{\frac{k}{m}} \][/tex]
[tex]\[ (f \times 2 \pi)^2 = \frac{k}{m} \][/tex]
[tex]\[ m = \frac{k}{(f \times 2 \pi)^2} \][/tex]
3. Calculate the Intermediate Values:
Calculate the value of [tex]\( 2 \pi f \)[/tex]:
[tex]\[ 2 \pi f = 2 \times 3.141592653589793 \times 0.429 \approx 2.6965336943312392 \][/tex]
Next, square this result:
[tex]\[ (2 \pi f)^2 = (2.6965336943312392)^2 \approx 7.2656474543235445 \][/tex]
4. Compute the Mass ([tex]\(m\)[/tex]):
Now, use the spring constant [tex]\( k \)[/tex] and the squared frequency calculated above to find the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{(2 \pi f)^2} = \frac{24200}{7.2656474543235445} \approx 3330.742394554168 \][/tex]
### Conclusion:
The mass of the truck is approximately [tex]\( 3330.742 \, \text{kg} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.