Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let’s determine the mass of the truck using the given information: the spring constant ([tex]\(k\)[/tex]) and the frequency ([tex]\(f\)[/tex]) of oscillation.
### Step-by-Step Solution:
1. Understand the Relationship:
The relationship between the spring constant, frequency, and mass in a harmonic oscillator is given by:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
where:
- [tex]\( f \)[/tex] is the frequency,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
2. Rearrange the Formula to Solve for Mass ([tex]\(m\)[/tex]):
Starting with the equation:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
Rearrange it to solve for the mass [tex]\( m \)[/tex] as follows:
[tex]\[ f \times 2 \pi = \sqrt{\frac{k}{m}} \][/tex]
[tex]\[ (f \times 2 \pi)^2 = \frac{k}{m} \][/tex]
[tex]\[ m = \frac{k}{(f \times 2 \pi)^2} \][/tex]
3. Calculate the Intermediate Values:
Calculate the value of [tex]\( 2 \pi f \)[/tex]:
[tex]\[ 2 \pi f = 2 \times 3.141592653589793 \times 0.429 \approx 2.6965336943312392 \][/tex]
Next, square this result:
[tex]\[ (2 \pi f)^2 = (2.6965336943312392)^2 \approx 7.2656474543235445 \][/tex]
4. Compute the Mass ([tex]\(m\)[/tex]):
Now, use the spring constant [tex]\( k \)[/tex] and the squared frequency calculated above to find the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{(2 \pi f)^2} = \frac{24200}{7.2656474543235445} \approx 3330.742394554168 \][/tex]
### Conclusion:
The mass of the truck is approximately [tex]\( 3330.742 \, \text{kg} \)[/tex].
### Step-by-Step Solution:
1. Understand the Relationship:
The relationship between the spring constant, frequency, and mass in a harmonic oscillator is given by:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
where:
- [tex]\( f \)[/tex] is the frequency,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( \pi \)[/tex] is a constant (approximately 3.14159).
2. Rearrange the Formula to Solve for Mass ([tex]\(m\)[/tex]):
Starting with the equation:
[tex]\[ f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \][/tex]
Rearrange it to solve for the mass [tex]\( m \)[/tex] as follows:
[tex]\[ f \times 2 \pi = \sqrt{\frac{k}{m}} \][/tex]
[tex]\[ (f \times 2 \pi)^2 = \frac{k}{m} \][/tex]
[tex]\[ m = \frac{k}{(f \times 2 \pi)^2} \][/tex]
3. Calculate the Intermediate Values:
Calculate the value of [tex]\( 2 \pi f \)[/tex]:
[tex]\[ 2 \pi f = 2 \times 3.141592653589793 \times 0.429 \approx 2.6965336943312392 \][/tex]
Next, square this result:
[tex]\[ (2 \pi f)^2 = (2.6965336943312392)^2 \approx 7.2656474543235445 \][/tex]
4. Compute the Mass ([tex]\(m\)[/tex]):
Now, use the spring constant [tex]\( k \)[/tex] and the squared frequency calculated above to find the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k}{(2 \pi f)^2} = \frac{24200}{7.2656474543235445} \approx 3330.742394554168 \][/tex]
### Conclusion:
The mass of the truck is approximately [tex]\( 3330.742 \, \text{kg} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.