Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's go through the step-by-step solution to graph the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex]. We will identify the [tex]$y$[/tex]-intercept, the [tex]$x$[/tex]-intercepts, and the vertex of the parabola.
### Step 1: Identify the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] is found by setting [tex]\( x = 0 \)[/tex] and solving for [tex]\( y \)[/tex].
[tex]\[ y = (0)^2 + 6(0) + 8 = 8 \][/tex]
So, the [tex]$y$[/tex]-intercept is at [tex]\( (0, 8) \)[/tex].
### Step 2: Identify the [tex]$x$[/tex]-intercepts
The [tex]$x$[/tex]-intercepts of a quadratic equation are the points where [tex]\( y = 0 \)[/tex]. To find these, we solve the equation:
[tex]\[ x^2 + 6x + 8 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1, b = 6, \)[/tex] and [tex]\( c = 8 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 32}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-6 + 2}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ x = \frac{-6 - 2}{2} = \frac{-8}{2} = -4 \][/tex]
So, the [tex]$x$[/tex]-intercepts are at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
### Step 3: Identify the vertex
The vertex of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \cdot 1} = -3 \][/tex]
Now, calculate the [tex]$y$[/tex]-coordinate by substituting [tex]\( x = -3 \)[/tex] back into the quadratic equation:
[tex]\[ y = (-3)^2 + 6(-3) + 8 \][/tex]
[tex]\[ y = 9 - 18 + 8 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the vertex is at [tex]\( (-3, -1) \)[/tex].
### Step 4: Graphing the equation
1. Plot the [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex].
2. Plot the [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
3. Plot the vertex at [tex]\( (-3, -1) \)[/tex].
4. Draw a parabolic curve passing through these points, opening upwards, as the coefficient of [tex]\( x^2 \)[/tex] is positive.
This creates the graph of the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex], showing all the key features:
- [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex]
- [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex]
- Vertex at [tex]\( (-3, -1) \)[/tex]
The graph would look like a parabola opening upwards, with the mentioned points highlighted.
### Step 1: Identify the [tex]$y$[/tex]-intercept
The [tex]$y$[/tex]-intercept of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] is found by setting [tex]\( x = 0 \)[/tex] and solving for [tex]\( y \)[/tex].
[tex]\[ y = (0)^2 + 6(0) + 8 = 8 \][/tex]
So, the [tex]$y$[/tex]-intercept is at [tex]\( (0, 8) \)[/tex].
### Step 2: Identify the [tex]$x$[/tex]-intercepts
The [tex]$x$[/tex]-intercepts of a quadratic equation are the points where [tex]\( y = 0 \)[/tex]. To find these, we solve the equation:
[tex]\[ x^2 + 6x + 8 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1, b = 6, \)[/tex] and [tex]\( c = 8 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 32}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ x = \frac{-6 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-6 + 2}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ x = \frac{-6 - 2}{2} = \frac{-8}{2} = -4 \][/tex]
So, the [tex]$x$[/tex]-intercepts are at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
### Step 3: Identify the vertex
The vertex of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] occurs at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \cdot 1} = -3 \][/tex]
Now, calculate the [tex]$y$[/tex]-coordinate by substituting [tex]\( x = -3 \)[/tex] back into the quadratic equation:
[tex]\[ y = (-3)^2 + 6(-3) + 8 \][/tex]
[tex]\[ y = 9 - 18 + 8 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the vertex is at [tex]\( (-3, -1) \)[/tex].
### Step 4: Graphing the equation
1. Plot the [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex].
2. Plot the [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex].
3. Plot the vertex at [tex]\( (-3, -1) \)[/tex].
4. Draw a parabolic curve passing through these points, opening upwards, as the coefficient of [tex]\( x^2 \)[/tex] is positive.
This creates the graph of the quadratic equation [tex]\( y = x^2 + 6x + 8 \)[/tex], showing all the key features:
- [tex]$y$[/tex]-intercept at [tex]\( (0, 8) \)[/tex]
- [tex]$x$[/tex]-intercepts at [tex]\( (-2, 0) \)[/tex] and [tex]\( (-4, 0) \)[/tex]
- Vertex at [tex]\( (-3, -1) \)[/tex]
The graph would look like a parabola opening upwards, with the mentioned points highlighted.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.