Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To simplify the expression [tex]\(\sqrt[3]{(x + y)^4}\)[/tex], follow these steps:
1. Recognize the exponent under the cube root:
The expression under the radical is [tex]\((x + y)^4\)[/tex].
2. Interpret the cube root:
The cube root of a number or expression is equivalent to raising that number or expression to the power of [tex]\(\frac{1}{3}\)[/tex].
Therefore, we can rewrite [tex]\(\sqrt[3]{(x + y)^4}\)[/tex] as:
[tex]\[ \sqrt[3]{(x + y)^4} = ((x + y)^4)^{\frac{1}{3}} \][/tex]
3. Combine the exponents:
Using the property of exponents that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ ((x + y)^4)^{\frac{1}{3}} = (x + y)^{4 \cdot \frac{1}{3}} \][/tex]
4. Simplify the exponent:
Multiply the exponents together:
[tex]\[ (x + y)^{4 \cdot \frac{1}{3}} = (x + y)^{\frac{4}{3}} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{(x + y)^{\frac{4}{3}}} \][/tex]
1. Recognize the exponent under the cube root:
The expression under the radical is [tex]\((x + y)^4\)[/tex].
2. Interpret the cube root:
The cube root of a number or expression is equivalent to raising that number or expression to the power of [tex]\(\frac{1}{3}\)[/tex].
Therefore, we can rewrite [tex]\(\sqrt[3]{(x + y)^4}\)[/tex] as:
[tex]\[ \sqrt[3]{(x + y)^4} = ((x + y)^4)^{\frac{1}{3}} \][/tex]
3. Combine the exponents:
Using the property of exponents that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ ((x + y)^4)^{\frac{1}{3}} = (x + y)^{4 \cdot \frac{1}{3}} \][/tex]
4. Simplify the exponent:
Multiply the exponents together:
[tex]\[ (x + y)^{4 \cdot \frac{1}{3}} = (x + y)^{\frac{4}{3}} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{(x + y)^{\frac{4}{3}}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.