At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the correlation coefficient for the data in the table, follow these steps:
1. Understand the Data: The data provided is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Means: Calculate the mean (average) of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the Numerator:
The numerator of the correlation coefficient is the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-7.5)(15-7.5) + (5-7.5)(10-7.5) + (10-7.5)(5-7.5) + (15-7.5)(0-7.5) \][/tex]
[tex]\[ = (-7.5)(7.5) + (-2.5)(2.5) + (2.5)(-2.5) + (7.5)(-7.5) \][/tex]
[tex]\[ = -56.25 + -6.25 + -6.25 + -56.25 \][/tex]
[tex]\[ = -125 \][/tex]
Since [tex]\( n = 4 \)[/tex],
[tex]\[ \text{Cov}(x, y) = \frac{-125}{4-1} = \frac{-125}{3} \approx -41.67 \][/tex]
4. Compute the Denominator:
This includes the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = (0-7.5)^2 + (5-7.5)^2 + (10-7.5)^2 + (15-7.5)^2 \][/tex]
[tex]\[ = 56.25 + 6.25 + 6.25 + 56.25 \][/tex]
[tex]\[ = 125 \][/tex]
[tex]\[ \sigma_x = \sqrt{\frac{125}{3}} \approx 6.45 \][/tex]
Similarly, for [tex]\( \sigma_y \)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sigma_x = 6.45 \][/tex]
5. Calculate the Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
[tex]\[ r = \frac{-41.67}{6.45 \times 6.45} \][/tex]
[tex]\[ r \approx -1.0 \][/tex]
Therefore, the correlation coefficient for the given data is [tex]\( -1.0 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
1. Understand the Data: The data provided is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Means: Calculate the mean (average) of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the Numerator:
The numerator of the correlation coefficient is the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-7.5)(15-7.5) + (5-7.5)(10-7.5) + (10-7.5)(5-7.5) + (15-7.5)(0-7.5) \][/tex]
[tex]\[ = (-7.5)(7.5) + (-2.5)(2.5) + (2.5)(-2.5) + (7.5)(-7.5) \][/tex]
[tex]\[ = -56.25 + -6.25 + -6.25 + -56.25 \][/tex]
[tex]\[ = -125 \][/tex]
Since [tex]\( n = 4 \)[/tex],
[tex]\[ \text{Cov}(x, y) = \frac{-125}{4-1} = \frac{-125}{3} \approx -41.67 \][/tex]
4. Compute the Denominator:
This includes the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = (0-7.5)^2 + (5-7.5)^2 + (10-7.5)^2 + (15-7.5)^2 \][/tex]
[tex]\[ = 56.25 + 6.25 + 6.25 + 56.25 \][/tex]
[tex]\[ = 125 \][/tex]
[tex]\[ \sigma_x = \sqrt{\frac{125}{3}} \approx 6.45 \][/tex]
Similarly, for [tex]\( \sigma_y \)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sigma_x = 6.45 \][/tex]
5. Calculate the Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
[tex]\[ r = \frac{-41.67}{6.45 \times 6.45} \][/tex]
[tex]\[ r \approx -1.0 \][/tex]
Therefore, the correlation coefficient for the given data is [tex]\( -1.0 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.