Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the energy of a photon of infrared radiation with a given frequency, we use the equation derived from Planck’s formula for the energy of a photon:
[tex]\[ E = h \cdot f \][/tex]
where
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant, which is [tex]\( 6.63 \times 10^{-34} \, J \cdot s \)[/tex],
- [tex]\( f \)[/tex] is the frequency of the radiation (given as [tex]\( 2.53 \times 10^{12} \, Hz \)[/tex]).
Plugging in the values:
[tex]\[ E = (6.63 \times 10^{-34} \, J \cdot s) \times (2.53 \times 10^{12} \, Hz) \][/tex]
Performing the multiplication:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \, J \][/tex]
[tex]\[ E = 16.7739 \times 10^{-22} \, J \][/tex]
[tex]\[ E = 1.67739 \times 10^{-21} \, J \][/tex]
We see that [tex]\( 1.67739 \times 10^{-21} \, J \)[/tex] is very close to [tex]\( 1.68 \times 10^{-21} \, J \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \, J} \][/tex]
[tex]\[ E = h \cdot f \][/tex]
where
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant, which is [tex]\( 6.63 \times 10^{-34} \, J \cdot s \)[/tex],
- [tex]\( f \)[/tex] is the frequency of the radiation (given as [tex]\( 2.53 \times 10^{12} \, Hz \)[/tex]).
Plugging in the values:
[tex]\[ E = (6.63 \times 10^{-34} \, J \cdot s) \times (2.53 \times 10^{12} \, Hz) \][/tex]
Performing the multiplication:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \, J \][/tex]
[tex]\[ E = 16.7739 \times 10^{-22} \, J \][/tex]
[tex]\[ E = 1.67739 \times 10^{-21} \, J \][/tex]
We see that [tex]\( 1.67739 \times 10^{-21} \, J \)[/tex] is very close to [tex]\( 1.68 \times 10^{-21} \, J \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \, J} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.