Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's walk through the problem step-by-step to understand where Heather might have gone wrong.
We are given two points:
- Point [tex]\( R(-3, -4) \)[/tex]
- Point [tex]\( S(5, 7) \)[/tex]
The formula to calculate the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
1. Calculate the Differences:
[tex]\[ \Delta x = x_2 - x_1 = 5 - (-3) = 5 + 3 = 8 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 7 - (-4) = 7 + 4 = 11 \][/tex]
2. Square the Differences:
[tex]\[ (\Delta x)^2 = 8^2 = 64 \][/tex]
[tex]\[ (\Delta y)^2 = 11^2 = 121 \][/tex]
3. Add the Squares:
[tex]\[ \text{Sum of squares} = 64 + 121 = 185 \][/tex]
4. Calculate the Distance:
[tex]\[ d = \sqrt{185} \approx 13.60 \][/tex]
Now, let's analyze Heather's calculations:
[tex]\[ RS = \sqrt{((-4)-(-3))^2 + (7-5)^2} \][/tex]
[tex]\[ RS = \sqrt{(-1)^2 + (2)^2} \][/tex]
[tex]\[ RS = \sqrt{1 + 4} \][/tex]
[tex]\[ RS = \sqrt{5} \][/tex]
Heather's Calculation:
[tex]\[ RS = \sqrt{5} \approx 2.236 \][/tex]
Compare Heather's calculation with the correct calculation.
Heather substituted [tex]\((x_2, y_1)\)[/tex] and [tex]\((y_2 - y_1)\)[/tex] as follows:
[tex]\[ \Delta x = -4 - (-3) = -1 \][/tex]
[tex]\[ \Delta y = 7 - 5 = 2 \][/tex]
While the correct differences should be:
[tex]\[ x_2 - x_1 = 5 - (-3) = 8 \][/tex]
[tex]\[ y_2 - y_1 = 7 - (-4) = 11 \][/tex]
When Heather calculated the distance, she used the wrong differences. Therefore, the error lies in how she substituted the coordinates into the distance formula.
Thus, the correct answer is:
A. She substituted incorrectly into the distance formula.
We are given two points:
- Point [tex]\( R(-3, -4) \)[/tex]
- Point [tex]\( S(5, 7) \)[/tex]
The formula to calculate the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
1. Calculate the Differences:
[tex]\[ \Delta x = x_2 - x_1 = 5 - (-3) = 5 + 3 = 8 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 7 - (-4) = 7 + 4 = 11 \][/tex]
2. Square the Differences:
[tex]\[ (\Delta x)^2 = 8^2 = 64 \][/tex]
[tex]\[ (\Delta y)^2 = 11^2 = 121 \][/tex]
3. Add the Squares:
[tex]\[ \text{Sum of squares} = 64 + 121 = 185 \][/tex]
4. Calculate the Distance:
[tex]\[ d = \sqrt{185} \approx 13.60 \][/tex]
Now, let's analyze Heather's calculations:
[tex]\[ RS = \sqrt{((-4)-(-3))^2 + (7-5)^2} \][/tex]
[tex]\[ RS = \sqrt{(-1)^2 + (2)^2} \][/tex]
[tex]\[ RS = \sqrt{1 + 4} \][/tex]
[tex]\[ RS = \sqrt{5} \][/tex]
Heather's Calculation:
[tex]\[ RS = \sqrt{5} \approx 2.236 \][/tex]
Compare Heather's calculation with the correct calculation.
Heather substituted [tex]\((x_2, y_1)\)[/tex] and [tex]\((y_2 - y_1)\)[/tex] as follows:
[tex]\[ \Delta x = -4 - (-3) = -1 \][/tex]
[tex]\[ \Delta y = 7 - 5 = 2 \][/tex]
While the correct differences should be:
[tex]\[ x_2 - x_1 = 5 - (-3) = 8 \][/tex]
[tex]\[ y_2 - y_1 = 7 - (-4) = 11 \][/tex]
When Heather calculated the distance, she used the wrong differences. Therefore, the error lies in how she substituted the coordinates into the distance formula.
Thus, the correct answer is:
A. She substituted incorrectly into the distance formula.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.