Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's start by clarifying what [tex]\( P(A \mid D) \)[/tex] and [tex]\( P(D \mid A) \)[/tex] represent and then we’ll calculate these probabilities step-by-step using the information in the given table.
### Step-by-Step Calculation for [tex]\( P(A \mid D) \)[/tex]
1. Understanding [tex]\( P(A \mid D) \)[/tex]:
[tex]\( P(A \mid D) \)[/tex] is the conditional probability of Event A occurring given that Event D has occurred. This is calculated as:
[tex]\[ P(A \mid D) = \frac{P(A \cap D)}{P(D)} \][/tex]
2. Identifying [tex]\( P(A \cap D) \)[/tex]:
[tex]\( P(A \cap D) \)[/tex] is the joint probability of both A and D occurring, which is given by the count of occurrences of both A and D in the table. From the table, this count is 2.
3. Identifying [tex]\( P(D) \)[/tex]:
[tex]\( P(D) \)[/tex] is the probability of Event D occurring, which is given by the total number of occurrences of D divided by the total number of events. From the table, the total number of occurrences of D is 10, and the total number of events is 17:
[tex]\[ P(D) = \frac{10}{17} \][/tex]
4. Calculating [tex]\( P(A \mid D) \)[/tex]:
Using the above, we get:
[tex]\[ P(A \mid D) = \frac{2}{10} = 0.2 \][/tex]
### Step-by-Step Calculation for [tex]\( P(D \mid A) \)[/tex]
1. Understanding [tex]\( P(D \mid A) \)[/tex]:
[tex]\( P(D \mid A) \)[/tex] is the conditional probability of Event D occurring given that Event A has occurred. This is calculated as:
[tex]\[ P(D \mid A) = \frac{P(D \cap A)}{P(A)} \][/tex]
2. Identifying [tex]\( P(D \cap A) \)[/tex]:
Note that [tex]\( P(D \cap A) = P(A \cap D) \)[/tex], which we identified earlier as 2.
3. Identifying [tex]\( P(A) \)[/tex]:
[tex]\( P(A) \)[/tex] is the probability of Event A occurring, which is given by the total number of occurrences of A divided by the total number of events. From the table, the total number of occurrences of A is 8, and the total number of events is 17:
[tex]\[ P(A) = \frac{8}{17} \][/tex]
4. Calculating [tex]\( P(D \mid A) \)[/tex]:
Using the above, we get:
[tex]\[ P(D \mid A) = \frac{2}{8} = 0.25 \][/tex]
### Conclusion
We have the following probabilities:
[tex]\[ P(A \mid D) = 0.2 \][/tex]
[tex]\[ P(D \mid A) = 0.25 \][/tex]
The calculated values for [tex]\( P(A \mid D) = 0.2 \)[/tex] and [tex]\( P(D \mid A) = 0.25 \)[/tex] show that these probabilities are not equal.
### Reason for the Difference
The reason [tex]\( P(A \mid D) \)[/tex] and [tex]\( P(D \mid A) \)[/tex] are not equal is due to the different denominators used in their calculations:
- [tex]\( P(A \mid D) \)[/tex] depends on the overall occurrences of D whereas
- [tex]\( P(D \mid A) \)[/tex] depends on the overall occurrences of A.
The total occurrences of D and A are not the same, which results in different probabilities. This exemplifies that conditional probabilities are not symmetric in general.
### Step-by-Step Calculation for [tex]\( P(A \mid D) \)[/tex]
1. Understanding [tex]\( P(A \mid D) \)[/tex]:
[tex]\( P(A \mid D) \)[/tex] is the conditional probability of Event A occurring given that Event D has occurred. This is calculated as:
[tex]\[ P(A \mid D) = \frac{P(A \cap D)}{P(D)} \][/tex]
2. Identifying [tex]\( P(A \cap D) \)[/tex]:
[tex]\( P(A \cap D) \)[/tex] is the joint probability of both A and D occurring, which is given by the count of occurrences of both A and D in the table. From the table, this count is 2.
3. Identifying [tex]\( P(D) \)[/tex]:
[tex]\( P(D) \)[/tex] is the probability of Event D occurring, which is given by the total number of occurrences of D divided by the total number of events. From the table, the total number of occurrences of D is 10, and the total number of events is 17:
[tex]\[ P(D) = \frac{10}{17} \][/tex]
4. Calculating [tex]\( P(A \mid D) \)[/tex]:
Using the above, we get:
[tex]\[ P(A \mid D) = \frac{2}{10} = 0.2 \][/tex]
### Step-by-Step Calculation for [tex]\( P(D \mid A) \)[/tex]
1. Understanding [tex]\( P(D \mid A) \)[/tex]:
[tex]\( P(D \mid A) \)[/tex] is the conditional probability of Event D occurring given that Event A has occurred. This is calculated as:
[tex]\[ P(D \mid A) = \frac{P(D \cap A)}{P(A)} \][/tex]
2. Identifying [tex]\( P(D \cap A) \)[/tex]:
Note that [tex]\( P(D \cap A) = P(A \cap D) \)[/tex], which we identified earlier as 2.
3. Identifying [tex]\( P(A) \)[/tex]:
[tex]\( P(A) \)[/tex] is the probability of Event A occurring, which is given by the total number of occurrences of A divided by the total number of events. From the table, the total number of occurrences of A is 8, and the total number of events is 17:
[tex]\[ P(A) = \frac{8}{17} \][/tex]
4. Calculating [tex]\( P(D \mid A) \)[/tex]:
Using the above, we get:
[tex]\[ P(D \mid A) = \frac{2}{8} = 0.25 \][/tex]
### Conclusion
We have the following probabilities:
[tex]\[ P(A \mid D) = 0.2 \][/tex]
[tex]\[ P(D \mid A) = 0.25 \][/tex]
The calculated values for [tex]\( P(A \mid D) = 0.2 \)[/tex] and [tex]\( P(D \mid A) = 0.25 \)[/tex] show that these probabilities are not equal.
### Reason for the Difference
The reason [tex]\( P(A \mid D) \)[/tex] and [tex]\( P(D \mid A) \)[/tex] are not equal is due to the different denominators used in their calculations:
- [tex]\( P(A \mid D) \)[/tex] depends on the overall occurrences of D whereas
- [tex]\( P(D \mid A) \)[/tex] depends on the overall occurrences of A.
The total occurrences of D and A are not the same, which results in different probabilities. This exemplifies that conditional probabilities are not symmetric in general.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.