Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which of the given sets of ordered pairs does not represent a function, we need to review the definition of a function. A relation is a function if and only if every input (or domain value) is associated with exactly one output (or range value). In other words, no input value (x-value) should be repeated with different output values (y-values).
Let's analyze each relation one by one:
1. Relation 1:
[tex]\[\{(5, 2), (4, 2), (3, 2), (2, 2), (1, 2)\}\][/tex]
- The x-values are [tex]\(\{5, 4, 3, 2, 1\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the first relation is a function.
2. Relation 2:
[tex]\[\{(-8, -3), (-6, -5), (-4, -2), (-2, -7), (-1, -4)\}\][/tex]
- The x-values are [tex]\(\{-8, -6, -4, -2, -1\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the second relation is a function.
3. Relation 3:
[tex]\[\{(-6, 4), (-3, -1), (0, 5), (1, -1), (2, 3)\}\][/tex]
- The x-values are [tex]\(\{-6, -3, 0, 1, 2\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the third relation is a function.
4. Relation 4:
[tex]\[\{(-4, -2), (-1, -1), (3, 2), (3, 5), (7, 10)\}\][/tex]
- The x-values are [tex]\(\{-4, -1, 3, 7\}\)[/tex].
- Here, the x-value [tex]\(3\)[/tex] is repeated with different y-values, specifically [tex]\( (3, 2) \)[/tex] and [tex]\( (3, 5) \)[/tex].
Since the x-value [tex]\(3\)[/tex] is associated with two different y-values ([tex]\(2\)[/tex] and [tex]\(5\)[/tex]), this violates the definition of a function.
Thus, the relation that is not a function is the fourth one:
[tex]\[\{(-4, -2), (-1, -1), (3, 2), (3, 5), (7, 10)\}\][/tex]
So, the relation set 4 is not a function.
Let's analyze each relation one by one:
1. Relation 1:
[tex]\[\{(5, 2), (4, 2), (3, 2), (2, 2), (1, 2)\}\][/tex]
- The x-values are [tex]\(\{5, 4, 3, 2, 1\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the first relation is a function.
2. Relation 2:
[tex]\[\{(-8, -3), (-6, -5), (-4, -2), (-2, -7), (-1, -4)\}\][/tex]
- The x-values are [tex]\(\{-8, -6, -4, -2, -1\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the second relation is a function.
3. Relation 3:
[tex]\[\{(-6, 4), (-3, -1), (0, 5), (1, -1), (2, 3)\}\][/tex]
- The x-values are [tex]\(\{-6, -3, 0, 1, 2\}\)[/tex].
- Each x-value is unique, and no x-value is repeated.
Therefore, the third relation is a function.
4. Relation 4:
[tex]\[\{(-4, -2), (-1, -1), (3, 2), (3, 5), (7, 10)\}\][/tex]
- The x-values are [tex]\(\{-4, -1, 3, 7\}\)[/tex].
- Here, the x-value [tex]\(3\)[/tex] is repeated with different y-values, specifically [tex]\( (3, 2) \)[/tex] and [tex]\( (3, 5) \)[/tex].
Since the x-value [tex]\(3\)[/tex] is associated with two different y-values ([tex]\(2\)[/tex] and [tex]\(5\)[/tex]), this violates the definition of a function.
Thus, the relation that is not a function is the fourth one:
[tex]\[\{(-4, -2), (-1, -1), (3, 2), (3, 5), (7, 10)\}\][/tex]
So, the relation set 4 is not a function.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.
a tow truck exerts a force of 2000 N on a car acceleration it at 1 m/s/s what is the mass of the car