Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let's go through each part of the problem step by step:
### Part (a): Determining the Rate Law
The rate law for a reaction involving [tex]\( I^- \)[/tex] and [tex]\( OCl^- \)[/tex] can generally be expressed as:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
Where:
- [tex]\( k \)[/tex] is the rate constant.
- [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are the orders of the reaction with respect to [tex]\( I^- \)[/tex] and [tex]\( OCl^- \)[/tex], respectively.
To find the orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare the rates from different experiments where only one concentration changes at a time.
#### Finding [tex]\( m \)[/tex]:
Compare experiments 1 and 2 where [tex]\([OCl^-]\)[/tex] is constant:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_2} = \left(\frac{[I^-]_1}{[I^-]_2}\right)^m \][/tex]
[tex]\[ \frac{7.91 \times 10^{-2}}{3.95 \times 10^{-2}} = \left(\frac{0.12}{0.060}\right)^m \][/tex]
[tex]\[ 2 = 2^m \][/tex]
[tex]\[ m = 1.0018250414083267 \approx 1 \][/tex]
#### Finding [tex]\( n \)[/tex]:
Compare experiments 1 and 3 where [tex]\([I^-]\)[/tex] is constant:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \left(\frac{[OCl^-]_1}{[OCl^-]_3}\right)^n \][/tex]
[tex]\[ \frac{7.91 \times 10^{-2}}{9.88 \times 10^{-3}} = \left(\frac{0.18}{0.090}\right)^n \][/tex]
[tex]\[ 8 = 2^n \][/tex]
[tex]\[ n = 3.001094747775477 \approx 3 \][/tex]
Thus, the rate law is:
[tex]\[ \text{Rate} = k [I^-] [OCl^-]^3 \][/tex]
### Part (b): Calculating the Rate Constant [tex]\( k \)[/tex]
Using the rate law derived and the data from any experiment, we can calculate [tex]\( k \)[/tex]. We'll take the average [tex]\( k \)[/tex] from all four experiments for better accuracy.
Using the rate law:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
[tex]\[ k = \frac{\text{Rate}}{[I^-]^m [OCl^-]^n} \][/tex]
Calculate [tex]\( k \)[/tex] for each experiment:
[tex]\[ k_1 = \frac{7.91 \times 10^{-2}}{(0.12)^1 (0.18)^3} \][/tex]
[tex]\[ k_2 = \frac{3.95 \times 10^{-2}}{(0.060)^1 (0.18)^3} \][/tex]
[tex]\[ k_3 = \frac{9.88 \times 10^{-3}}{(0.030)^1 (0.090)^3} \][/tex]
[tex]\[ k_4 = \frac{7.91 \times 10^{-2}}{(0.24)^1 (0.090)^3} \][/tex]
Taking the average [tex]\( k \)[/tex] from these values, we get:
[tex]\[ k = 284.42355843931466 \ \text{L}^3 \ \text{mol}^{-3} \ \text{s}^{-1} \][/tex]
### Part (c): Calculating the Initial Rate for Given Concentrations
Given [tex]\( [I^-] = 0.15 \ \text{mol/L} \)[/tex] and [tex]\( [OCl^-] = 0.15 \ \text{mol/L} \)[/tex]:
Using the rate law:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
[tex]\[ \text{Rate} = 284.42355843931466 \times (0.15)^1 \times (0.15)^3 \][/tex]
Calculate the rate:
[tex]\[ \text{Rate} = 284.42355843931466 \times 0.15 \times 0.15^3 \][/tex]
[tex]\[ \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \][/tex]
So, the initial rate for the given concentrations is:
[tex]\[ \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \][/tex]
To summarize:
- Rate Law: [tex]\( \text{Rate} = 284.42355843931466 [I^-] [OCl^-]^3 \)[/tex]
- Rate Constant: [tex]\( k = 284.42355843931466 \ \text{L}^3 \ \text{mol}^{-3} \ \text{s}^{-1} \)[/tex]
- Initial Rate: [tex]\( \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \)[/tex] when both [tex]\( [I^-] \)[/tex] and [tex]\( [OCl^-] \)[/tex] are initially 0.15 mol/L.
### Part (a): Determining the Rate Law
The rate law for a reaction involving [tex]\( I^- \)[/tex] and [tex]\( OCl^- \)[/tex] can generally be expressed as:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
Where:
- [tex]\( k \)[/tex] is the rate constant.
- [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are the orders of the reaction with respect to [tex]\( I^- \)[/tex] and [tex]\( OCl^- \)[/tex], respectively.
To find the orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare the rates from different experiments where only one concentration changes at a time.
#### Finding [tex]\( m \)[/tex]:
Compare experiments 1 and 2 where [tex]\([OCl^-]\)[/tex] is constant:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_2} = \left(\frac{[I^-]_1}{[I^-]_2}\right)^m \][/tex]
[tex]\[ \frac{7.91 \times 10^{-2}}{3.95 \times 10^{-2}} = \left(\frac{0.12}{0.060}\right)^m \][/tex]
[tex]\[ 2 = 2^m \][/tex]
[tex]\[ m = 1.0018250414083267 \approx 1 \][/tex]
#### Finding [tex]\( n \)[/tex]:
Compare experiments 1 and 3 where [tex]\([I^-]\)[/tex] is constant:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \left(\frac{[OCl^-]_1}{[OCl^-]_3}\right)^n \][/tex]
[tex]\[ \frac{7.91 \times 10^{-2}}{9.88 \times 10^{-3}} = \left(\frac{0.18}{0.090}\right)^n \][/tex]
[tex]\[ 8 = 2^n \][/tex]
[tex]\[ n = 3.001094747775477 \approx 3 \][/tex]
Thus, the rate law is:
[tex]\[ \text{Rate} = k [I^-] [OCl^-]^3 \][/tex]
### Part (b): Calculating the Rate Constant [tex]\( k \)[/tex]
Using the rate law derived and the data from any experiment, we can calculate [tex]\( k \)[/tex]. We'll take the average [tex]\( k \)[/tex] from all four experiments for better accuracy.
Using the rate law:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
[tex]\[ k = \frac{\text{Rate}}{[I^-]^m [OCl^-]^n} \][/tex]
Calculate [tex]\( k \)[/tex] for each experiment:
[tex]\[ k_1 = \frac{7.91 \times 10^{-2}}{(0.12)^1 (0.18)^3} \][/tex]
[tex]\[ k_2 = \frac{3.95 \times 10^{-2}}{(0.060)^1 (0.18)^3} \][/tex]
[tex]\[ k_3 = \frac{9.88 \times 10^{-3}}{(0.030)^1 (0.090)^3} \][/tex]
[tex]\[ k_4 = \frac{7.91 \times 10^{-2}}{(0.24)^1 (0.090)^3} \][/tex]
Taking the average [tex]\( k \)[/tex] from these values, we get:
[tex]\[ k = 284.42355843931466 \ \text{L}^3 \ \text{mol}^{-3} \ \text{s}^{-1} \][/tex]
### Part (c): Calculating the Initial Rate for Given Concentrations
Given [tex]\( [I^-] = 0.15 \ \text{mol/L} \)[/tex] and [tex]\( [OCl^-] = 0.15 \ \text{mol/L} \)[/tex]:
Using the rate law:
[tex]\[ \text{Rate} = k [I^-]^m [OCl^-]^n \][/tex]
[tex]\[ \text{Rate} = 284.42355843931466 \times (0.15)^1 \times (0.15)^3 \][/tex]
Calculate the rate:
[tex]\[ \text{Rate} = 284.42355843931466 \times 0.15 \times 0.15^3 \][/tex]
[tex]\[ \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \][/tex]
So, the initial rate for the given concentrations is:
[tex]\[ \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \][/tex]
To summarize:
- Rate Law: [tex]\( \text{Rate} = 284.42355843931466 [I^-] [OCl^-]^3 \)[/tex]
- Rate Constant: [tex]\( k = 284.42355843931466 \ \text{L}^3 \ \text{mol}^{-3} \ \text{s}^{-1} \)[/tex]
- Initial Rate: [tex]\( \text{Rate} = 0.1431940465235448 \ \text{mol} \ \text{L}^{-1} \ \text{s}^{-1} \)[/tex] when both [tex]\( [I^-] \)[/tex] and [tex]\( [OCl^-] \)[/tex] are initially 0.15 mol/L.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.