Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this question, we need to understand the relationship between the slopes of the given lines. A tangent line to a circle at a point [tex]\( Q \)[/tex] is perpendicular to the line passing through the center of the circle and the point [tex]\( Q \)[/tex]. In this question, the equation of the diameter passing through point [tex]\( Q \)[/tex] is given as [tex]\( y = 4x + 2 \)[/tex].
1. Identify the slope of the given line:
The given line [tex]\( y = 4x + 2 \)[/tex] is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, the slope [tex]\( m \)[/tex] of the given line is [tex]\( 4 \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. So, we need to find the negative reciprocal of [tex]\( 4 \)[/tex].
The negative reciprocal of [tex]\( 4 \)[/tex] is calculated as:
[tex]\[ \text{slope of the perpendicular line} = -\frac{1}{4} \][/tex]
3. Determine the slope of the tangent line:
Since the tangent line at point [tex]\( Q \)[/tex] on the circle [tex]\( P \)[/tex] is perpendicular to the line passing through the center and the same point [tex]\( Q \)[/tex], the slope of the tangent line must be:
[tex]\[ -\frac{1}{4} \][/tex]
Therefore, the correct statement describing the slope of the tangent line to circle [tex]\( P \)[/tex] at point [tex]\( Q \)[/tex] is:
C. The slope of the tangent line is [tex]\(-\frac{1}{4}\)[/tex].
1. Identify the slope of the given line:
The given line [tex]\( y = 4x + 2 \)[/tex] is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, the slope [tex]\( m \)[/tex] of the given line is [tex]\( 4 \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. So, we need to find the negative reciprocal of [tex]\( 4 \)[/tex].
The negative reciprocal of [tex]\( 4 \)[/tex] is calculated as:
[tex]\[ \text{slope of the perpendicular line} = -\frac{1}{4} \][/tex]
3. Determine the slope of the tangent line:
Since the tangent line at point [tex]\( Q \)[/tex] on the circle [tex]\( P \)[/tex] is perpendicular to the line passing through the center and the same point [tex]\( Q \)[/tex], the slope of the tangent line must be:
[tex]\[ -\frac{1}{4} \][/tex]
Therefore, the correct statement describing the slope of the tangent line to circle [tex]\( P \)[/tex] at point [tex]\( Q \)[/tex] is:
C. The slope of the tangent line is [tex]\(-\frac{1}{4}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.