Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

A sphere and a cylinder have the same radius and height. The volume of the cylinder is [tex]$21 \, m^3$[/tex].

What is the volume of the sphere?

Sagot :

To determine the volume of the sphere, let's start by gathering the given information and applying the formulas for the volumes of a cylinder and a sphere.

### Step 1: Understanding the volume formulas

We know the following standard formulas for volumes:
- The volume of a cylinder is [tex]\( V_{\text{cylinder}} = \pi r^2 h \)[/tex]
- The volume of a sphere is [tex]\( V_{\text{sphere}} = \frac{4}{3}\pi r^3 \)[/tex]

### Step 2: Given information

- The volume of the cylinder is [tex]\( 21 \, \text{m}^3 \)[/tex].
- The cylinder and the sphere have the same radius [tex]\( r \)[/tex] and the same height [tex]\( h \)[/tex].

### Step 3: Relating the height of the cylinder to the radius of the sphere

Given that the cylinder and the sphere have the same radius and height, the height of the cylinder [tex]\( h \)[/tex] translates directly to the diameter of the sphere, which means:
[tex]\[ h = 2r \][/tex]

### Step 4: Using the volume of the cylinder to find the radius

From the volume of the cylinder formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
[tex]\[ 21 = \pi r^2 h \][/tex]

Substitute [tex]\( h = 2r \)[/tex] into the equation:
[tex]\[ 21 = \pi r^2 (2r) \][/tex]
[tex]\[ 21 = 2\pi r^3 \][/tex]

### Step 5: Solving for the radius [tex]\( r \)[/tex]

Rearrange and solve for [tex]\( r \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
[tex]\[ r = \left( \frac{21}{2\pi} \right)^{1/3} \][/tex]

### Step 6: Calculating the volume of the sphere

Using the radius [tex]\( r \)[/tex] we found, we can now find the volume of the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3}\pi r^3 \][/tex]
Since [tex]\( r^3 = \frac{21}{2\pi} \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3}\pi \left( \frac{21}{2\pi} \right) \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4}{3}\pi \left( \frac{21}{2\pi} \right) \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{84}{6} \][/tex]
[tex]\[ V_{\text{sphere}} = 14 \, \text{m}^3 \][/tex]

Therefore, the volume of the sphere is [tex]\( 14 \, \text{m}^3 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.