Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Given the focus of the parabola [tex]\((0, -2)\)[/tex] and the directrix [tex]\(y = 0\)[/tex]:
1. Finding [tex]\(p\)[/tex]:
- The distance [tex]\(2p\)[/tex] between the focus and the directrix is the distance from [tex]\((0, -2)\)[/tex] to the line [tex]\(y = 0\)[/tex].
- Thus, [tex]\(2p = 2\)[/tex], so [tex]\(p = 1\)[/tex].
2. Finding the vertex:
- The vertex is halfway between the focus and the directrix.
- The midpoint of the y-coordinates [tex]\(-2\)[/tex] and [tex]\(0\)[/tex] is [tex]\(\frac{-2 + 0}{2} = -1\)[/tex].
- Therefore, the vertex is [tex]\((0, -1)\)[/tex].
3. Equation in vertex form:
- The vertex form of the parabola is [tex]\(y = \frac{1}{4p}(x-h)^2 + k\)[/tex].
- Here, [tex]\(p = 1\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(k = -1\)[/tex].
- Therefore, the equation is [tex]\(y = \frac{1}{4 \cdot 1}(x - 0)^2 - 1 = \frac{1}{4}(x^2) - 1 = 0.25x^2 - 1\)[/tex].
Filling in the blanks:
- The value of [tex]\(p\)[/tex] is [tex]\(1\)[/tex].
- The vertex of the parabola is the point [tex]\((0, -1)\)[/tex].
- The equation of the parabola in vertex form is [tex]\(y = 0.25x^2 - 1\)[/tex].
1. Finding [tex]\(p\)[/tex]:
- The distance [tex]\(2p\)[/tex] between the focus and the directrix is the distance from [tex]\((0, -2)\)[/tex] to the line [tex]\(y = 0\)[/tex].
- Thus, [tex]\(2p = 2\)[/tex], so [tex]\(p = 1\)[/tex].
2. Finding the vertex:
- The vertex is halfway between the focus and the directrix.
- The midpoint of the y-coordinates [tex]\(-2\)[/tex] and [tex]\(0\)[/tex] is [tex]\(\frac{-2 + 0}{2} = -1\)[/tex].
- Therefore, the vertex is [tex]\((0, -1)\)[/tex].
3. Equation in vertex form:
- The vertex form of the parabola is [tex]\(y = \frac{1}{4p}(x-h)^2 + k\)[/tex].
- Here, [tex]\(p = 1\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(k = -1\)[/tex].
- Therefore, the equation is [tex]\(y = \frac{1}{4 \cdot 1}(x - 0)^2 - 1 = \frac{1}{4}(x^2) - 1 = 0.25x^2 - 1\)[/tex].
Filling in the blanks:
- The value of [tex]\(p\)[/tex] is [tex]\(1\)[/tex].
- The vertex of the parabola is the point [tex]\((0, -1)\)[/tex].
- The equation of the parabola in vertex form is [tex]\(y = 0.25x^2 - 1\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.