At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's break down the solution step-by-step for the given problem where the population grows according to an exponential growth model, with [tex]\( P_0 = 60 \)[/tex] and [tex]\( P_1 = 102 \)[/tex].
### Step 1: Determine the Multiplication Factor
To find the multiplication factor used in the recursive formula, we use the initial values [tex]\( P_0 \)[/tex] and [tex]\( P_1 \)[/tex]:
[tex]\[ P_0 = 60 \][/tex]
[tex]\[ P_1 = 102 \][/tex]
The multiplication factor is calculated as the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_0 \)[/tex]:
[tex]\[ \text{Multiplication Factor} = \frac{P_1}{P_0} = \frac{102}{60} = 1.7 \][/tex]
### Step 2: Write the Recursive Formula
Using the multiplication factor, the recursive formula can be written as:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
### Step 3: Determine the Explicit Formula
The explicit formula for [tex]\( P_n \)[/tex] in an exponential growth model can be written using the initial population [tex]\( P_0 \)[/tex] and the multiplication factor. The formula is:
[tex]\[ P_n = P_0 \times (\text{Multiplication Factor})^n \][/tex]
Given [tex]\( P_0 = 60 \)[/tex] and the multiplication factor is [tex]\( 1.7 \)[/tex], the explicit formula becomes:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Final Answer
Recursive Formula:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
Explicit Formula:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Step 1: Determine the Multiplication Factor
To find the multiplication factor used in the recursive formula, we use the initial values [tex]\( P_0 \)[/tex] and [tex]\( P_1 \)[/tex]:
[tex]\[ P_0 = 60 \][/tex]
[tex]\[ P_1 = 102 \][/tex]
The multiplication factor is calculated as the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_0 \)[/tex]:
[tex]\[ \text{Multiplication Factor} = \frac{P_1}{P_0} = \frac{102}{60} = 1.7 \][/tex]
### Step 2: Write the Recursive Formula
Using the multiplication factor, the recursive formula can be written as:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
### Step 3: Determine the Explicit Formula
The explicit formula for [tex]\( P_n \)[/tex] in an exponential growth model can be written using the initial population [tex]\( P_0 \)[/tex] and the multiplication factor. The formula is:
[tex]\[ P_n = P_0 \times (\text{Multiplication Factor})^n \][/tex]
Given [tex]\( P_0 = 60 \)[/tex] and the multiplication factor is [tex]\( 1.7 \)[/tex], the explicit formula becomes:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Final Answer
Recursive Formula:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
Explicit Formula:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.