Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's break down the solution step-by-step for the given problem where the population grows according to an exponential growth model, with [tex]\( P_0 = 60 \)[/tex] and [tex]\( P_1 = 102 \)[/tex].
### Step 1: Determine the Multiplication Factor
To find the multiplication factor used in the recursive formula, we use the initial values [tex]\( P_0 \)[/tex] and [tex]\( P_1 \)[/tex]:
[tex]\[ P_0 = 60 \][/tex]
[tex]\[ P_1 = 102 \][/tex]
The multiplication factor is calculated as the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_0 \)[/tex]:
[tex]\[ \text{Multiplication Factor} = \frac{P_1}{P_0} = \frac{102}{60} = 1.7 \][/tex]
### Step 2: Write the Recursive Formula
Using the multiplication factor, the recursive formula can be written as:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
### Step 3: Determine the Explicit Formula
The explicit formula for [tex]\( P_n \)[/tex] in an exponential growth model can be written using the initial population [tex]\( P_0 \)[/tex] and the multiplication factor. The formula is:
[tex]\[ P_n = P_0 \times (\text{Multiplication Factor})^n \][/tex]
Given [tex]\( P_0 = 60 \)[/tex] and the multiplication factor is [tex]\( 1.7 \)[/tex], the explicit formula becomes:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Final Answer
Recursive Formula:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
Explicit Formula:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Step 1: Determine the Multiplication Factor
To find the multiplication factor used in the recursive formula, we use the initial values [tex]\( P_0 \)[/tex] and [tex]\( P_1 \)[/tex]:
[tex]\[ P_0 = 60 \][/tex]
[tex]\[ P_1 = 102 \][/tex]
The multiplication factor is calculated as the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_0 \)[/tex]:
[tex]\[ \text{Multiplication Factor} = \frac{P_1}{P_0} = \frac{102}{60} = 1.7 \][/tex]
### Step 2: Write the Recursive Formula
Using the multiplication factor, the recursive formula can be written as:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
### Step 3: Determine the Explicit Formula
The explicit formula for [tex]\( P_n \)[/tex] in an exponential growth model can be written using the initial population [tex]\( P_0 \)[/tex] and the multiplication factor. The formula is:
[tex]\[ P_n = P_0 \times (\text{Multiplication Factor})^n \][/tex]
Given [tex]\( P_0 = 60 \)[/tex] and the multiplication factor is [tex]\( 1.7 \)[/tex], the explicit formula becomes:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
### Final Answer
Recursive Formula:
[tex]\[ P_n = 1.7 \times P_{n-1} \][/tex]
Explicit Formula:
[tex]\[ P_n = 60 \times (1.7)^n \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.