Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's determine which of the given expressions is not equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression A: [tex]\( \left(a^{\frac{1}{8}}\right)^2 \)[/tex]
We can simplify this expression by applying the power of a power rule:
[tex]\[ \left(a^{\frac{1}{8}}\right)^2 = a^{\frac{1}{8} \cdot 2} = a^{\frac{2}{8}} = a^{\frac{1}{4}} \][/tex]
So, Expression A is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression B: [tex]\( a^{\frac{3}{4}} \div a^{\frac{1}{2}} \)[/tex]
We can simplify this by applying the quotient of powers rule (subtract the exponents):
[tex]\[ a^{\frac{3}{4}} \div a^{\frac{1}{2}} = a^{\frac{3}{4} - \frac{1}{2}} = a^{\frac{3}{4} - \frac{2}{4}} = a^{\frac{1}{4}} \][/tex]
So, Expression B is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression C: [tex]\( \sqrt{a} \)[/tex]
We can express this in exponent form:
[tex]\[ \sqrt{a} = a^{\frac{1}{2}} \][/tex]
This is not equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression D: [tex]\( a^{\frac{1}{8}} \times a^{\frac{1}{8}} \)[/tex]
We can simplify this by applying the product of powers rule (add the exponents):
[tex]\[ a^{\frac{1}{8}} \times a^{\frac{1}{8}} = a^{\frac{1}{8} + \frac{1}{8}} = a^{\frac{2}{8}} = a^{\frac{1}{4}} \][/tex]
So, Expression D is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Conclusion
The expression that is not equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex] is:
[tex]\[ \boxed{\text{C}} \][/tex]
### Expression A: [tex]\( \left(a^{\frac{1}{8}}\right)^2 \)[/tex]
We can simplify this expression by applying the power of a power rule:
[tex]\[ \left(a^{\frac{1}{8}}\right)^2 = a^{\frac{1}{8} \cdot 2} = a^{\frac{2}{8}} = a^{\frac{1}{4}} \][/tex]
So, Expression A is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression B: [tex]\( a^{\frac{3}{4}} \div a^{\frac{1}{2}} \)[/tex]
We can simplify this by applying the quotient of powers rule (subtract the exponents):
[tex]\[ a^{\frac{3}{4}} \div a^{\frac{1}{2}} = a^{\frac{3}{4} - \frac{1}{2}} = a^{\frac{3}{4} - \frac{2}{4}} = a^{\frac{1}{4}} \][/tex]
So, Expression B is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression C: [tex]\( \sqrt{a} \)[/tex]
We can express this in exponent form:
[tex]\[ \sqrt{a} = a^{\frac{1}{2}} \][/tex]
This is not equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Expression D: [tex]\( a^{\frac{1}{8}} \times a^{\frac{1}{8}} \)[/tex]
We can simplify this by applying the product of powers rule (add the exponents):
[tex]\[ a^{\frac{1}{8}} \times a^{\frac{1}{8}} = a^{\frac{1}{8} + \frac{1}{8}} = a^{\frac{2}{8}} = a^{\frac{1}{4}} \][/tex]
So, Expression D is equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex].
### Conclusion
The expression that is not equivalent to [tex]\( a^{\frac{1}{4}} \)[/tex] is:
[tex]\[ \boxed{\text{C}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.