Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's work through this step-by-step to find the value of the equilibrium constant [tex]\( K_c \)[/tex] for the given reaction.
Given:
- Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
- Volume of the container: [tex]\( 2.00 \, \text{dm}^3 \)[/tex]
- Moles of [tex]\( N_2O \)[/tex] remaining at equilibrium: 2.20 moles
The reaction is:
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
### Step 1: Calculate the change in moles of [tex]\( N_2O \)[/tex]
Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
Equilibrium moles of [tex]\( N_2O \)[/tex]: 2.20 moles
Change in moles ([tex]\( \Delta N_2O \)[/tex]):
[tex]\[ \Delta N_2O = \text{Initial moles} - \text{Equilibrium moles} = 10.0 - 2.20 = 7.8 \, \text{moles} \][/tex]
### Step 2: Calculate moles of [tex]\( N_2 \)[/tex] and [tex]\( O_2 \)[/tex] produced
From the balanced reaction equation, we know that 2 moles of [tex]\( N_2O \)[/tex] decompose to produce 2 moles of [tex]\( N_2 \)[/tex] and 1 mole of [tex]\( O_2 \)[/tex].
Thus, moles of [tex]\( N_2 \)[/tex] produced ([tex]\( \Delta N_2 \)[/tex]) is equal to the change in moles of [tex]\( N_2O \)[/tex]:
[tex]\[ \Delta N_2 = 7.8 \, \text{moles} \][/tex]
Moles of [tex]\( O_2 \)[/tex] produced ([tex]\( \Delta O_2 \)[/tex]):
[tex]\[ \Delta O_2 = \frac{7.8}{2} = 3.9 \, \text{moles} \][/tex]
### Step 3: Calculate concentrations at equilibrium
The volume of the container is [tex]\( 2.00 \, \text{dm}^3 \)[/tex].
Concentration of [tex]\( N_2O \)[/tex] at equilibrium ([tex]\( [N_2O] \)[/tex]):
[tex]\[ [N_2O] = \frac{\text{Moles of } N_2O \text{ at equilibrium}}{\text{Volume}} = \frac{2.20}{2.00} = 1.1 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( N_2 \)[/tex] at equilibrium ([tex]\( [N_2] \)[/tex]):
[tex]\[ [N_2] = \frac{\Delta N_2}{\text{Volume}} = \frac{7.8}{2.00} = 3.9 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( O_2 \)[/tex] at equilibrium ([tex]\( [O_2] \)[/tex]):
[tex]\[ [O_2] = \frac{\Delta O_2}{\text{Volume}} = \frac{3.9}{2.00} = 1.95 \, \text{mol/dm}^3 \][/tex]
### Step 4: Write the expression for the equilibrium constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
is given by:
[tex]\[ K_c = \frac{[N_2]^2 [O_2]}{[N_2O]^2} \][/tex]
### Step 5: Substitute the equilibrium concentrations into the [tex]\( K_c \)[/tex] expression
[tex]\[ K_c = \frac{(3.9)^2 \times 1.95}{(1.1)^2} \][/tex]
### Step 6: Compute the value of [tex]\( K_c \)[/tex]
[tex]\[ K_c = \frac{15.21 \times 1.95}{1.21} \][/tex]
[tex]\[ K_c = \frac{29.6595}{1.21} \][/tex]
[tex]\[ K_c = 24.511983471074373 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is approximately 24.51.
Given:
- Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
- Volume of the container: [tex]\( 2.00 \, \text{dm}^3 \)[/tex]
- Moles of [tex]\( N_2O \)[/tex] remaining at equilibrium: 2.20 moles
The reaction is:
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
### Step 1: Calculate the change in moles of [tex]\( N_2O \)[/tex]
Initial moles of [tex]\( N_2O \)[/tex]: 10.0 moles
Equilibrium moles of [tex]\( N_2O \)[/tex]: 2.20 moles
Change in moles ([tex]\( \Delta N_2O \)[/tex]):
[tex]\[ \Delta N_2O = \text{Initial moles} - \text{Equilibrium moles} = 10.0 - 2.20 = 7.8 \, \text{moles} \][/tex]
### Step 2: Calculate moles of [tex]\( N_2 \)[/tex] and [tex]\( O_2 \)[/tex] produced
From the balanced reaction equation, we know that 2 moles of [tex]\( N_2O \)[/tex] decompose to produce 2 moles of [tex]\( N_2 \)[/tex] and 1 mole of [tex]\( O_2 \)[/tex].
Thus, moles of [tex]\( N_2 \)[/tex] produced ([tex]\( \Delta N_2 \)[/tex]) is equal to the change in moles of [tex]\( N_2O \)[/tex]:
[tex]\[ \Delta N_2 = 7.8 \, \text{moles} \][/tex]
Moles of [tex]\( O_2 \)[/tex] produced ([tex]\( \Delta O_2 \)[/tex]):
[tex]\[ \Delta O_2 = \frac{7.8}{2} = 3.9 \, \text{moles} \][/tex]
### Step 3: Calculate concentrations at equilibrium
The volume of the container is [tex]\( 2.00 \, \text{dm}^3 \)[/tex].
Concentration of [tex]\( N_2O \)[/tex] at equilibrium ([tex]\( [N_2O] \)[/tex]):
[tex]\[ [N_2O] = \frac{\text{Moles of } N_2O \text{ at equilibrium}}{\text{Volume}} = \frac{2.20}{2.00} = 1.1 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( N_2 \)[/tex] at equilibrium ([tex]\( [N_2] \)[/tex]):
[tex]\[ [N_2] = \frac{\Delta N_2}{\text{Volume}} = \frac{7.8}{2.00} = 3.9 \, \text{mol/dm}^3 \][/tex]
Concentration of [tex]\( O_2 \)[/tex] at equilibrium ([tex]\( [O_2] \)[/tex]):
[tex]\[ [O_2] = \frac{\Delta O_2}{\text{Volume}} = \frac{3.9}{2.00} = 1.95 \, \text{mol/dm}^3 \][/tex]
### Step 4: Write the expression for the equilibrium constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ 2 N_2O_{(g)} \rightleftharpoons 2 N_{2(g)} + O_{2(g)} \][/tex]
is given by:
[tex]\[ K_c = \frac{[N_2]^2 [O_2]}{[N_2O]^2} \][/tex]
### Step 5: Substitute the equilibrium concentrations into the [tex]\( K_c \)[/tex] expression
[tex]\[ K_c = \frac{(3.9)^2 \times 1.95}{(1.1)^2} \][/tex]
### Step 6: Compute the value of [tex]\( K_c \)[/tex]
[tex]\[ K_c = \frac{15.21 \times 1.95}{1.21} \][/tex]
[tex]\[ K_c = \frac{29.6595}{1.21} \][/tex]
[tex]\[ K_c = 24.511983471074373 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is approximately 24.51.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.