Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's address each part of the problem step-by-step.
### Part (a)
Given:
- Area ([tex]\( S \)[/tex]) = 25 cm²
- Separation ([tex]\( d \)[/tex]) = 0.5 mm
- Air dielectric
Solution:
1. Convert the given units to standard SI units:
- [tex]\( S = 25 \times 10^{-4} \)[/tex] m²
- [tex]\( d = 0.5 \times 10^{-3} \)[/tex] m
2. The permittivity of free space ([tex]\( \epsilon_0 \)[/tex]) is [tex]\( 8.854187817 \times 10^{-12} \)[/tex] F/m.
3. Use the formula for capacitance of a parallel-plate capacitor:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{25 \times 10^{-4}}{0.5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 4.427 \times 10^{-11} \text{ F} \][/tex]
Therefore, the capacitance is approximately [tex]\( 4.427093908499999 \times 10^{-11} \)[/tex] F.
### Part (b)
Given:
- Area ([tex]\( S \)[/tex]) = 2 m²
- Separation ([tex]\( d \)[/tex]) = 5 mm
- Potential difference ([tex]\( V \)[/tex]) = 10,000 V (10 kV)
- The space between plates is vacuum (i.e., [tex]\( \epsilon_0 \)[/tex])
Solution:
1. Convert the separation [tex]\( d \)[/tex] to meters:
- [tex]\( d = 5 \times 10^{-3} \)[/tex] m
2. (a) Capacitance:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{2}{5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 3.542 \times 10^{-9} \text{ F} \][/tex]
The capacitance is approximately [tex]\( 3.5416751267999994 \times 10^{-9} \)[/tex] F.
3. (b) Charge on each plate:
[tex]\[ Q = C \times V \][/tex]
[tex]\[ Q = 3.542 \times 10^{-9} \times 10,000 \][/tex]
[tex]\[ Q \approx 3.542 \times 10^{-5} \text{ C} \][/tex]
The charge on each plate is approximately [tex]\( 3.541675126799999 \times 10^{-5} \)[/tex] C.
4. (c) Electric field magnitude:
[tex]\[ E = \frac{V}{d} \][/tex]
[tex]\[ E = \frac{10,000}{5 \times 10^{-3}} \][/tex]
[tex]\[ E = 2,000,000 \text{ V/m} \][/tex]
The magnitude of the electric field is approximately [tex]\( 2,000,000.0 \)[/tex] V/m.
### Part (c)
Given:
- Capacitance [tex]\( C_1 = 6 \)[/tex] µF
- Capacitance [tex]\( C_2 = 3 \)[/tex] µF
- Voltage [tex]\( V \)[/tex] = 18 V
Solution:
i) In Series:
1. Equivalent capacitance:
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{C_1} + \frac{1}{C_2} \][/tex]
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{6 \times 10^{-6}} + \frac{1}{3 \times 10^{-6}} \][/tex]
[tex]\[ C_\text{series} = 2 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in series is [tex]\( 2 \times 10^{-6} \)[/tex] F (or 2 µF).
2. Charge in series (same for both):
[tex]\[ Q_\text{series} = C_\text{series} \times V \][/tex]
[tex]\[ Q_\text{series} = 2 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_\text{series} = 3.6 \times 10^{-5} \text{ C} \][/tex]
The charge in series is [tex]\( 3.6 \times 10^{-5} \)[/tex] C.
3. Voltage across each capacitor:
[tex]\[ V_{C1(\text{series})} = \frac{Q_\text{series}}{C_1} \][/tex]
[tex]\[ V_{C1(\text{series})} = \frac{3.6 \times 10^{-5}}{6 \times 10^{-6}} \][/tex]
[tex]\[ V_{C1(\text{series})} = 6 \text{ V} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{Q_\text{series}}{C_2} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{3.6 \times 10^{-5}}{3 \times 10^{-6}} \][/tex]
[tex]\[ V_{C2(\text{series})} = 12 \text{ V} \][/tex]
The voltage across [tex]\( C_1 \)[/tex] is 6 V, and across [tex]\( C_2 \)[/tex] is 12 V.
ii) In Parallel:
1. Equivalent capacitance:
[tex]\[ C_\text{parallel} = C_1 + C_2 \][/tex]
[tex]\[ C_\text{parallel} = 6 \times 10^{-6} + 3 \times 10^{-6} \][/tex]
[tex]\[ C_\text{parallel} = 9 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in parallel is [tex]\( 9 \times 10^{-6} \)[/tex] F (or 9 µF).
2. Charge on each capacitor:
[tex]\[ Q_{C1(\text{parallel})} = C_1 \times V \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 6 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 108 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_1 \)[/tex] is [tex]\( 1.08 \times 10^{-4} \)[/tex] C (or 108 µC).
[tex]\[ Q_{C2(\text{parallel})} = C_2 \times V \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 3 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 54 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_2 \)[/tex] is [tex]\( 5.4 \times 10^{-5} \)[/tex] C (or 54 µC).
Summary:
- (a) Capacitance: [tex]\(\approx 4.427 \times 10^{-11} \text{ F}\)[/tex]
- (b) Capacitance: [tex]\(\approx 3.542 \times 10^{-9} \text{ F}\)[/tex]
- Charge: [tex]\(\approx 3.542 \times 10^{-5} \text{ C}\)[/tex]
- Electric field: [tex]\(\approx 2,000,000.0 \text{ V/m}\)[/tex]
- (c-i)
- Series Capacitance: [tex]\(2 \times 10^{-6} \text{ F}\)[/tex]
- Charge: [tex]\(3.6 \times 10^{-5} \text{ C}\)[/tex]
- Voltage across [tex]\( C_1 \)[/tex]: 6 V
- Voltage across [tex]\( C_2 \)[/tex]: 12 V
- (c-ii)
- Parallel Capacitance: [tex]\(9 \times 10^{-6} \text{ F}\)[/tex]
- Charge on [tex]\( C_1 \)[/tex]: [tex]\(1.08 \times 10^{-4} \text{ C}\)[/tex]
- Charge on [tex]\( C_2 \)[/tex]: [tex]\(5.4 \times 10^{-5} \text{ C}\)[/tex]
This completes the detailed step-by-step solution for each part of the question.
### Part (a)
Given:
- Area ([tex]\( S \)[/tex]) = 25 cm²
- Separation ([tex]\( d \)[/tex]) = 0.5 mm
- Air dielectric
Solution:
1. Convert the given units to standard SI units:
- [tex]\( S = 25 \times 10^{-4} \)[/tex] m²
- [tex]\( d = 0.5 \times 10^{-3} \)[/tex] m
2. The permittivity of free space ([tex]\( \epsilon_0 \)[/tex]) is [tex]\( 8.854187817 \times 10^{-12} \)[/tex] F/m.
3. Use the formula for capacitance of a parallel-plate capacitor:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{25 \times 10^{-4}}{0.5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 4.427 \times 10^{-11} \text{ F} \][/tex]
Therefore, the capacitance is approximately [tex]\( 4.427093908499999 \times 10^{-11} \)[/tex] F.
### Part (b)
Given:
- Area ([tex]\( S \)[/tex]) = 2 m²
- Separation ([tex]\( d \)[/tex]) = 5 mm
- Potential difference ([tex]\( V \)[/tex]) = 10,000 V (10 kV)
- The space between plates is vacuum (i.e., [tex]\( \epsilon_0 \)[/tex])
Solution:
1. Convert the separation [tex]\( d \)[/tex] to meters:
- [tex]\( d = 5 \times 10^{-3} \)[/tex] m
2. (a) Capacitance:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{2}{5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 3.542 \times 10^{-9} \text{ F} \][/tex]
The capacitance is approximately [tex]\( 3.5416751267999994 \times 10^{-9} \)[/tex] F.
3. (b) Charge on each plate:
[tex]\[ Q = C \times V \][/tex]
[tex]\[ Q = 3.542 \times 10^{-9} \times 10,000 \][/tex]
[tex]\[ Q \approx 3.542 \times 10^{-5} \text{ C} \][/tex]
The charge on each plate is approximately [tex]\( 3.541675126799999 \times 10^{-5} \)[/tex] C.
4. (c) Electric field magnitude:
[tex]\[ E = \frac{V}{d} \][/tex]
[tex]\[ E = \frac{10,000}{5 \times 10^{-3}} \][/tex]
[tex]\[ E = 2,000,000 \text{ V/m} \][/tex]
The magnitude of the electric field is approximately [tex]\( 2,000,000.0 \)[/tex] V/m.
### Part (c)
Given:
- Capacitance [tex]\( C_1 = 6 \)[/tex] µF
- Capacitance [tex]\( C_2 = 3 \)[/tex] µF
- Voltage [tex]\( V \)[/tex] = 18 V
Solution:
i) In Series:
1. Equivalent capacitance:
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{C_1} + \frac{1}{C_2} \][/tex]
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{6 \times 10^{-6}} + \frac{1}{3 \times 10^{-6}} \][/tex]
[tex]\[ C_\text{series} = 2 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in series is [tex]\( 2 \times 10^{-6} \)[/tex] F (or 2 µF).
2. Charge in series (same for both):
[tex]\[ Q_\text{series} = C_\text{series} \times V \][/tex]
[tex]\[ Q_\text{series} = 2 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_\text{series} = 3.6 \times 10^{-5} \text{ C} \][/tex]
The charge in series is [tex]\( 3.6 \times 10^{-5} \)[/tex] C.
3. Voltage across each capacitor:
[tex]\[ V_{C1(\text{series})} = \frac{Q_\text{series}}{C_1} \][/tex]
[tex]\[ V_{C1(\text{series})} = \frac{3.6 \times 10^{-5}}{6 \times 10^{-6}} \][/tex]
[tex]\[ V_{C1(\text{series})} = 6 \text{ V} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{Q_\text{series}}{C_2} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{3.6 \times 10^{-5}}{3 \times 10^{-6}} \][/tex]
[tex]\[ V_{C2(\text{series})} = 12 \text{ V} \][/tex]
The voltage across [tex]\( C_1 \)[/tex] is 6 V, and across [tex]\( C_2 \)[/tex] is 12 V.
ii) In Parallel:
1. Equivalent capacitance:
[tex]\[ C_\text{parallel} = C_1 + C_2 \][/tex]
[tex]\[ C_\text{parallel} = 6 \times 10^{-6} + 3 \times 10^{-6} \][/tex]
[tex]\[ C_\text{parallel} = 9 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in parallel is [tex]\( 9 \times 10^{-6} \)[/tex] F (or 9 µF).
2. Charge on each capacitor:
[tex]\[ Q_{C1(\text{parallel})} = C_1 \times V \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 6 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 108 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_1 \)[/tex] is [tex]\( 1.08 \times 10^{-4} \)[/tex] C (or 108 µC).
[tex]\[ Q_{C2(\text{parallel})} = C_2 \times V \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 3 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 54 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_2 \)[/tex] is [tex]\( 5.4 \times 10^{-5} \)[/tex] C (or 54 µC).
Summary:
- (a) Capacitance: [tex]\(\approx 4.427 \times 10^{-11} \text{ F}\)[/tex]
- (b) Capacitance: [tex]\(\approx 3.542 \times 10^{-9} \text{ F}\)[/tex]
- Charge: [tex]\(\approx 3.542 \times 10^{-5} \text{ C}\)[/tex]
- Electric field: [tex]\(\approx 2,000,000.0 \text{ V/m}\)[/tex]
- (c-i)
- Series Capacitance: [tex]\(2 \times 10^{-6} \text{ F}\)[/tex]
- Charge: [tex]\(3.6 \times 10^{-5} \text{ C}\)[/tex]
- Voltage across [tex]\( C_1 \)[/tex]: 6 V
- Voltage across [tex]\( C_2 \)[/tex]: 12 V
- (c-ii)
- Parallel Capacitance: [tex]\(9 \times 10^{-6} \text{ F}\)[/tex]
- Charge on [tex]\( C_1 \)[/tex]: [tex]\(1.08 \times 10^{-4} \text{ C}\)[/tex]
- Charge on [tex]\( C_2 \)[/tex]: [tex]\(5.4 \times 10^{-5} \text{ C}\)[/tex]
This completes the detailed step-by-step solution for each part of the question.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.