Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's address each part of the problem step-by-step.
### Part (a)
Given:
- Area ([tex]\( S \)[/tex]) = 25 cm²
- Separation ([tex]\( d \)[/tex]) = 0.5 mm
- Air dielectric
Solution:
1. Convert the given units to standard SI units:
- [tex]\( S = 25 \times 10^{-4} \)[/tex] m²
- [tex]\( d = 0.5 \times 10^{-3} \)[/tex] m
2. The permittivity of free space ([tex]\( \epsilon_0 \)[/tex]) is [tex]\( 8.854187817 \times 10^{-12} \)[/tex] F/m.
3. Use the formula for capacitance of a parallel-plate capacitor:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{25 \times 10^{-4}}{0.5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 4.427 \times 10^{-11} \text{ F} \][/tex]
Therefore, the capacitance is approximately [tex]\( 4.427093908499999 \times 10^{-11} \)[/tex] F.
### Part (b)
Given:
- Area ([tex]\( S \)[/tex]) = 2 m²
- Separation ([tex]\( d \)[/tex]) = 5 mm
- Potential difference ([tex]\( V \)[/tex]) = 10,000 V (10 kV)
- The space between plates is vacuum (i.e., [tex]\( \epsilon_0 \)[/tex])
Solution:
1. Convert the separation [tex]\( d \)[/tex] to meters:
- [tex]\( d = 5 \times 10^{-3} \)[/tex] m
2. (a) Capacitance:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{2}{5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 3.542 \times 10^{-9} \text{ F} \][/tex]
The capacitance is approximately [tex]\( 3.5416751267999994 \times 10^{-9} \)[/tex] F.
3. (b) Charge on each plate:
[tex]\[ Q = C \times V \][/tex]
[tex]\[ Q = 3.542 \times 10^{-9} \times 10,000 \][/tex]
[tex]\[ Q \approx 3.542 \times 10^{-5} \text{ C} \][/tex]
The charge on each plate is approximately [tex]\( 3.541675126799999 \times 10^{-5} \)[/tex] C.
4. (c) Electric field magnitude:
[tex]\[ E = \frac{V}{d} \][/tex]
[tex]\[ E = \frac{10,000}{5 \times 10^{-3}} \][/tex]
[tex]\[ E = 2,000,000 \text{ V/m} \][/tex]
The magnitude of the electric field is approximately [tex]\( 2,000,000.0 \)[/tex] V/m.
### Part (c)
Given:
- Capacitance [tex]\( C_1 = 6 \)[/tex] µF
- Capacitance [tex]\( C_2 = 3 \)[/tex] µF
- Voltage [tex]\( V \)[/tex] = 18 V
Solution:
i) In Series:
1. Equivalent capacitance:
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{C_1} + \frac{1}{C_2} \][/tex]
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{6 \times 10^{-6}} + \frac{1}{3 \times 10^{-6}} \][/tex]
[tex]\[ C_\text{series} = 2 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in series is [tex]\( 2 \times 10^{-6} \)[/tex] F (or 2 µF).
2. Charge in series (same for both):
[tex]\[ Q_\text{series} = C_\text{series} \times V \][/tex]
[tex]\[ Q_\text{series} = 2 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_\text{series} = 3.6 \times 10^{-5} \text{ C} \][/tex]
The charge in series is [tex]\( 3.6 \times 10^{-5} \)[/tex] C.
3. Voltage across each capacitor:
[tex]\[ V_{C1(\text{series})} = \frac{Q_\text{series}}{C_1} \][/tex]
[tex]\[ V_{C1(\text{series})} = \frac{3.6 \times 10^{-5}}{6 \times 10^{-6}} \][/tex]
[tex]\[ V_{C1(\text{series})} = 6 \text{ V} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{Q_\text{series}}{C_2} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{3.6 \times 10^{-5}}{3 \times 10^{-6}} \][/tex]
[tex]\[ V_{C2(\text{series})} = 12 \text{ V} \][/tex]
The voltage across [tex]\( C_1 \)[/tex] is 6 V, and across [tex]\( C_2 \)[/tex] is 12 V.
ii) In Parallel:
1. Equivalent capacitance:
[tex]\[ C_\text{parallel} = C_1 + C_2 \][/tex]
[tex]\[ C_\text{parallel} = 6 \times 10^{-6} + 3 \times 10^{-6} \][/tex]
[tex]\[ C_\text{parallel} = 9 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in parallel is [tex]\( 9 \times 10^{-6} \)[/tex] F (or 9 µF).
2. Charge on each capacitor:
[tex]\[ Q_{C1(\text{parallel})} = C_1 \times V \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 6 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 108 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_1 \)[/tex] is [tex]\( 1.08 \times 10^{-4} \)[/tex] C (or 108 µC).
[tex]\[ Q_{C2(\text{parallel})} = C_2 \times V \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 3 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 54 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_2 \)[/tex] is [tex]\( 5.4 \times 10^{-5} \)[/tex] C (or 54 µC).
Summary:
- (a) Capacitance: [tex]\(\approx 4.427 \times 10^{-11} \text{ F}\)[/tex]
- (b) Capacitance: [tex]\(\approx 3.542 \times 10^{-9} \text{ F}\)[/tex]
- Charge: [tex]\(\approx 3.542 \times 10^{-5} \text{ C}\)[/tex]
- Electric field: [tex]\(\approx 2,000,000.0 \text{ V/m}\)[/tex]
- (c-i)
- Series Capacitance: [tex]\(2 \times 10^{-6} \text{ F}\)[/tex]
- Charge: [tex]\(3.6 \times 10^{-5} \text{ C}\)[/tex]
- Voltage across [tex]\( C_1 \)[/tex]: 6 V
- Voltage across [tex]\( C_2 \)[/tex]: 12 V
- (c-ii)
- Parallel Capacitance: [tex]\(9 \times 10^{-6} \text{ F}\)[/tex]
- Charge on [tex]\( C_1 \)[/tex]: [tex]\(1.08 \times 10^{-4} \text{ C}\)[/tex]
- Charge on [tex]\( C_2 \)[/tex]: [tex]\(5.4 \times 10^{-5} \text{ C}\)[/tex]
This completes the detailed step-by-step solution for each part of the question.
### Part (a)
Given:
- Area ([tex]\( S \)[/tex]) = 25 cm²
- Separation ([tex]\( d \)[/tex]) = 0.5 mm
- Air dielectric
Solution:
1. Convert the given units to standard SI units:
- [tex]\( S = 25 \times 10^{-4} \)[/tex] m²
- [tex]\( d = 0.5 \times 10^{-3} \)[/tex] m
2. The permittivity of free space ([tex]\( \epsilon_0 \)[/tex]) is [tex]\( 8.854187817 \times 10^{-12} \)[/tex] F/m.
3. Use the formula for capacitance of a parallel-plate capacitor:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{25 \times 10^{-4}}{0.5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 4.427 \times 10^{-11} \text{ F} \][/tex]
Therefore, the capacitance is approximately [tex]\( 4.427093908499999 \times 10^{-11} \)[/tex] F.
### Part (b)
Given:
- Area ([tex]\( S \)[/tex]) = 2 m²
- Separation ([tex]\( d \)[/tex]) = 5 mm
- Potential difference ([tex]\( V \)[/tex]) = 10,000 V (10 kV)
- The space between plates is vacuum (i.e., [tex]\( \epsilon_0 \)[/tex])
Solution:
1. Convert the separation [tex]\( d \)[/tex] to meters:
- [tex]\( d = 5 \times 10^{-3} \)[/tex] m
2. (a) Capacitance:
[tex]\[ C = \epsilon_0 \frac{S}{d} \][/tex]
[tex]\[ C = 8.854187817 \times 10^{-12} \frac{2}{5 \times 10^{-3}} \][/tex]
[tex]\[ C \approx 3.542 \times 10^{-9} \text{ F} \][/tex]
The capacitance is approximately [tex]\( 3.5416751267999994 \times 10^{-9} \)[/tex] F.
3. (b) Charge on each plate:
[tex]\[ Q = C \times V \][/tex]
[tex]\[ Q = 3.542 \times 10^{-9} \times 10,000 \][/tex]
[tex]\[ Q \approx 3.542 \times 10^{-5} \text{ C} \][/tex]
The charge on each plate is approximately [tex]\( 3.541675126799999 \times 10^{-5} \)[/tex] C.
4. (c) Electric field magnitude:
[tex]\[ E = \frac{V}{d} \][/tex]
[tex]\[ E = \frac{10,000}{5 \times 10^{-3}} \][/tex]
[tex]\[ E = 2,000,000 \text{ V/m} \][/tex]
The magnitude of the electric field is approximately [tex]\( 2,000,000.0 \)[/tex] V/m.
### Part (c)
Given:
- Capacitance [tex]\( C_1 = 6 \)[/tex] µF
- Capacitance [tex]\( C_2 = 3 \)[/tex] µF
- Voltage [tex]\( V \)[/tex] = 18 V
Solution:
i) In Series:
1. Equivalent capacitance:
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{C_1} + \frac{1}{C_2} \][/tex]
[tex]\[ \frac{1}{C_\text{series}} = \frac{1}{6 \times 10^{-6}} + \frac{1}{3 \times 10^{-6}} \][/tex]
[tex]\[ C_\text{series} = 2 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in series is [tex]\( 2 \times 10^{-6} \)[/tex] F (or 2 µF).
2. Charge in series (same for both):
[tex]\[ Q_\text{series} = C_\text{series} \times V \][/tex]
[tex]\[ Q_\text{series} = 2 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_\text{series} = 3.6 \times 10^{-5} \text{ C} \][/tex]
The charge in series is [tex]\( 3.6 \times 10^{-5} \)[/tex] C.
3. Voltage across each capacitor:
[tex]\[ V_{C1(\text{series})} = \frac{Q_\text{series}}{C_1} \][/tex]
[tex]\[ V_{C1(\text{series})} = \frac{3.6 \times 10^{-5}}{6 \times 10^{-6}} \][/tex]
[tex]\[ V_{C1(\text{series})} = 6 \text{ V} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{Q_\text{series}}{C_2} \][/tex]
[tex]\[ V_{C2(\text{series})} = \frac{3.6 \times 10^{-5}}{3 \times 10^{-6}} \][/tex]
[tex]\[ V_{C2(\text{series})} = 12 \text{ V} \][/tex]
The voltage across [tex]\( C_1 \)[/tex] is 6 V, and across [tex]\( C_2 \)[/tex] is 12 V.
ii) In Parallel:
1. Equivalent capacitance:
[tex]\[ C_\text{parallel} = C_1 + C_2 \][/tex]
[tex]\[ C_\text{parallel} = 6 \times 10^{-6} + 3 \times 10^{-6} \][/tex]
[tex]\[ C_\text{parallel} = 9 \times 10^{-6} \text{ F} \][/tex]
The equivalent capacitance in parallel is [tex]\( 9 \times 10^{-6} \)[/tex] F (or 9 µF).
2. Charge on each capacitor:
[tex]\[ Q_{C1(\text{parallel})} = C_1 \times V \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 6 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C1(\text{parallel})} = 108 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_1 \)[/tex] is [tex]\( 1.08 \times 10^{-4} \)[/tex] C (or 108 µC).
[tex]\[ Q_{C2(\text{parallel})} = C_2 \times V \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 3 \times 10^{-6} \times 18 \][/tex]
[tex]\[ Q_{C2(\text{parallel})} = 54 \times 10^{-6} \text{ C} \][/tex]
The charge on [tex]\( C_2 \)[/tex] is [tex]\( 5.4 \times 10^{-5} \)[/tex] C (or 54 µC).
Summary:
- (a) Capacitance: [tex]\(\approx 4.427 \times 10^{-11} \text{ F}\)[/tex]
- (b) Capacitance: [tex]\(\approx 3.542 \times 10^{-9} \text{ F}\)[/tex]
- Charge: [tex]\(\approx 3.542 \times 10^{-5} \text{ C}\)[/tex]
- Electric field: [tex]\(\approx 2,000,000.0 \text{ V/m}\)[/tex]
- (c-i)
- Series Capacitance: [tex]\(2 \times 10^{-6} \text{ F}\)[/tex]
- Charge: [tex]\(3.6 \times 10^{-5} \text{ C}\)[/tex]
- Voltage across [tex]\( C_1 \)[/tex]: 6 V
- Voltage across [tex]\( C_2 \)[/tex]: 12 V
- (c-ii)
- Parallel Capacitance: [tex]\(9 \times 10^{-6} \text{ F}\)[/tex]
- Charge on [tex]\( C_1 \)[/tex]: [tex]\(1.08 \times 10^{-4} \text{ C}\)[/tex]
- Charge on [tex]\( C_2 \)[/tex]: [tex]\(5.4 \times 10^{-5} \text{ C}\)[/tex]
This completes the detailed step-by-step solution for each part of the question.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.