Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's break down how the changes in the dimensions of a rectangular prism affect its surface area.
1. Original Surface Area Formula:
For a rectangular prism with length [tex]\( l \)[/tex], width [tex]\( w \)[/tex], and height [tex]\( h \)[/tex], the surface area [tex]\( S_A \)[/tex] is calculated as:
[tex]\[ S_A = 2lw + 2lh + 2wh \][/tex]
2. Changes in Dimensions:
- The length [tex]\( l \)[/tex] is shrunk by a factor of two-thirds, so the new length is [tex]\( \frac{2}{3}l \)[/tex].
- The width [tex]\( w \)[/tex] is quadrupled, so the new width is [tex]\( 4w \)[/tex].
- The height [tex]\( h \)[/tex] is cut in half, so the new height is [tex]\( \frac{1}{2}h \)[/tex].
3. New Surface Area Calculation:
Substituting the new dimensions into the surface area formula:
[tex]\[ S_A = 2 \left( \frac{2}{3}l \right) (4w) + 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) + 2 (4w) \left( \frac{1}{2}h \right) \][/tex]
Simplifying each term:
- For the first term:
[tex]\[ 2 \left( \frac{2}{3}l \right) (4w) = 2 \left( \frac{8}{3}lw \right) = \frac{16}{3}lw \][/tex]
- For the second term:
[tex]\[ 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) = 2 \left( \frac{2}{6}lh \right) = \left( \frac{2}{3}lh \right) \][/tex]
- For the third term:
[tex]\[ 2 (4w) \left( \frac{1}{2}h \right) = 2 (2wh) = 4wh \][/tex]
Combining all the simplified terms, the new surface area formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]
4. Matching with the Given Choices:
Compare the derived formula with the given options.
The correct formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]
Thus, the best answer from the provided choices is:
[tex]\[ \boxed{C. \ S A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh} \][/tex]
1. Original Surface Area Formula:
For a rectangular prism with length [tex]\( l \)[/tex], width [tex]\( w \)[/tex], and height [tex]\( h \)[/tex], the surface area [tex]\( S_A \)[/tex] is calculated as:
[tex]\[ S_A = 2lw + 2lh + 2wh \][/tex]
2. Changes in Dimensions:
- The length [tex]\( l \)[/tex] is shrunk by a factor of two-thirds, so the new length is [tex]\( \frac{2}{3}l \)[/tex].
- The width [tex]\( w \)[/tex] is quadrupled, so the new width is [tex]\( 4w \)[/tex].
- The height [tex]\( h \)[/tex] is cut in half, so the new height is [tex]\( \frac{1}{2}h \)[/tex].
3. New Surface Area Calculation:
Substituting the new dimensions into the surface area formula:
[tex]\[ S_A = 2 \left( \frac{2}{3}l \right) (4w) + 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) + 2 (4w) \left( \frac{1}{2}h \right) \][/tex]
Simplifying each term:
- For the first term:
[tex]\[ 2 \left( \frac{2}{3}l \right) (4w) = 2 \left( \frac{8}{3}lw \right) = \frac{16}{3}lw \][/tex]
- For the second term:
[tex]\[ 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) = 2 \left( \frac{2}{6}lh \right) = \left( \frac{2}{3}lh \right) \][/tex]
- For the third term:
[tex]\[ 2 (4w) \left( \frac{1}{2}h \right) = 2 (2wh) = 4wh \][/tex]
Combining all the simplified terms, the new surface area formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]
4. Matching with the Given Choices:
Compare the derived formula with the given options.
The correct formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]
Thus, the best answer from the provided choices is:
[tex]\[ \boxed{C. \ S A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.