Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

For a rectangular prism, if the base length was shrunk by a factor of two-thirds, the width was quadrupled, and the height was cut in half, how would the changes affect the surface area formula?

A. [tex]S A=16 h w+\frac{1}{3} l w+\frac{2}{3} w h[/tex]
B. [tex]S A=\frac{16}{3} h w-\frac{3}{4} l h+2 w h[/tex]
C. [tex]S A=\frac{16}{3} h w+\frac{2}{3} l h+4 w h[/tex]
D. [tex]S A=\frac{2}{3} h+\frac{16}{3} l w+8 w h[/tex]

Please select the best answer from the choices provided.


Sagot :

Let's break down how the changes in the dimensions of a rectangular prism affect its surface area.

1. Original Surface Area Formula:
For a rectangular prism with length [tex]\( l \)[/tex], width [tex]\( w \)[/tex], and height [tex]\( h \)[/tex], the surface area [tex]\( S_A \)[/tex] is calculated as:
[tex]\[ S_A = 2lw + 2lh + 2wh \][/tex]

2. Changes in Dimensions:
- The length [tex]\( l \)[/tex] is shrunk by a factor of two-thirds, so the new length is [tex]\( \frac{2}{3}l \)[/tex].
- The width [tex]\( w \)[/tex] is quadrupled, so the new width is [tex]\( 4w \)[/tex].
- The height [tex]\( h \)[/tex] is cut in half, so the new height is [tex]\( \frac{1}{2}h \)[/tex].

3. New Surface Area Calculation:
Substituting the new dimensions into the surface area formula:
[tex]\[ S_A = 2 \left( \frac{2}{3}l \right) (4w) + 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) + 2 (4w) \left( \frac{1}{2}h \right) \][/tex]

Simplifying each term:
- For the first term:
[tex]\[ 2 \left( \frac{2}{3}l \right) (4w) = 2 \left( \frac{8}{3}lw \right) = \frac{16}{3}lw \][/tex]
- For the second term:
[tex]\[ 2 \left( \frac{2}{3}l \right) \left( \frac{1}{2}h \right) = 2 \left( \frac{2}{6}lh \right) = \left( \frac{2}{3}lh \right) \][/tex]
- For the third term:
[tex]\[ 2 (4w) \left( \frac{1}{2}h \right) = 2 (2wh) = 4wh \][/tex]

Combining all the simplified terms, the new surface area formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]

4. Matching with the Given Choices:
Compare the derived formula with the given options.
The correct formula is:
[tex]\[ S_A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh \][/tex]

Thus, the best answer from the provided choices is:
[tex]\[ \boxed{C. \ S A = \frac{16}{3}lw + \frac{2}{3}lh + 4wh} \][/tex]