Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equilibrium concentration of [tex]\( Cl_2 \)[/tex] for the given reaction at a specified value of [tex]\( K_c \)[/tex], we'll follow these steps in a detailed, step-by-step manner:
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.