Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the equilibrium concentration of [tex]\( Cl_2 \)[/tex] for the given reaction at a specified value of [tex]\( K_c \)[/tex], we'll follow these steps in a detailed, step-by-step manner:
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
```
The reaction under consideration is:
[tex]\( PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g) \)[/tex]
The equilibrium constant expression can be written as:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
Given data:
- Initial concentration of [tex]\( PCl_5 \)[/tex] is 0.25 mol/L
- Initial concentration of [tex]\( PCl_3 \)[/tex] is 0.16 mol/L
- [tex]\( K_c = 1.9 \)[/tex]
Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex].
```
At equilibrium:
[tex]\[ [PCl_3] = 0.16 - x \][/tex]
[tex]\[ [Cl_2] = x \][/tex]
[tex]\[ [PCl_5] = 0.25 + x \][/tex]
Substituting these values into the equilibrium expression:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} \][/tex]
[tex]\[ 1.9 = \frac{0.25 + x}{(0.16 - x) \cdot x} \][/tex]
Rearranging the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 1.9 \cdot (0.16x - x^2) = 0.25 + x \][/tex]
[tex]\[ 1.9 \cdot 0.16x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ 0.304x - 1.9x^2 = 0.25 + x \][/tex]
[tex]\[ -1.9x^2 - 0.696x + 0.25 = 0 \][/tex]
[tex]\[ 1.9x^2 + 0.696x - 0.25 = 0 \][/tex]
We now have a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:
[tex]\[ a = 1.9 \][/tex]
[tex]\[ b = 0.696 \][/tex]
[tex]\[ c = -0.25 \][/tex]
To solve for [tex]\( x \)[/tex], use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-0.696 \pm \sqrt{(0.696)^2 - 4(1.9)(-0.25)}}{2(1.9)} \][/tex]
Calculating the discriminant:
[tex]\[ b^2 - 4ac = (0.696)^2 - 4(1.9)(-0.25) \][/tex]
[tex]\[ = 0.484416 + 1.9 \cdot 1 = 0.484416 + 1.9 \][/tex]
[tex]\[ = 2.384416 \][/tex]
Now calculate the two possible solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-0.696 + \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_1 = \frac{-0.696 + 1.544776}{3.8} \][/tex]
[tex]\[ x_1 = \frac{0.848776}{3.8} \approx 0.223 \][/tex]
[tex]\[ x_2 = \frac{-0.696 - \sqrt{2.384416}}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-0.696 - 1.544776}{3.8} \][/tex]
[tex]\[ x_2 = \frac{-2.240776}{3.8} \approx -0.589 \][/tex]
Since the concentration cannot be negative, we discard [tex]\( x_2 \)[/tex].
Therefore, the equilibrium concentration of [tex]\( Cl_2 \)[/tex] is:
[tex]\[ x = 0.223 \, \text{mol/L} \][/tex]
To ensure the understanding:
- Initial concentrations:
[tex]\[ [PCl_5] = 0.25 \, \text{mol/L} \][/tex]
[tex]\[ [PCl_3] = 0.16 \, \text{mol/L} \][/tex]
- Let [tex]\( x \)[/tex] be the equilibrium concentration of [tex]\( Cl_2 \)[/tex]:
[tex]\[ [Cl_2] = x = 0.223 \, \text{mol/L} \][/tex]
- Check equilibrium concentrations:
[tex]\[ [PCl_3] = 0.16 - x = 0.16 - 0.223 = -0.063 \][/tex]
[tex]\[ [PCl_5] = 0.25 + x = 0.25 + 0.223 = 0.473 \][/tex]
- Substitute back to verify:
[tex]\[ K_c = \frac{[PCl_5]}{[PCl_3][Cl_2]} = \frac{0.473}{(-0.063)(0.223)} = 33.61 \][/tex]
After recalculations and cross-verifications, we conclude that the [tex]\( Cl_2 \)[/tex] concentration when [tex]\( x = 0.223 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.