Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the function [tex]\( f(x) = 7^x + 3 \)[/tex] represents exponential growth, decay, or neither, we need to analyze the form and behavior of the function.
1. Understanding the Base of the Exponential Function:
- In the function [tex]\( f(x) = 7^x + 3 \)[/tex], the term [tex]\( 7^x \)[/tex] is an exponential expression with a base of 7.
- The base of an exponential function dictates whether it exhibits growth or decay. When the base [tex]\( b \)[/tex] of [tex]\( b^x \)[/tex] is greater than 1, the function [tex]\( b^x \)[/tex] shows exponential growth. Conversely, if [tex]\( 0 < b < 1 \)[/tex], the function shows exponential decay.
2. Evaluating the Given Function:
- Here, the base of the exponent is 7, which is greater than 1.
- Therefore, the term [tex]\( 7^x \)[/tex] by itself represents exponential growth.
3. Effect of the Constant Term:
- The function [tex]\( f(x) = 7^x + 3 \)[/tex] includes an additional constant term +3.
- Adding a constant to an exponential function shifts the graph vertically but does not affect the growth or decay nature of the exponential term.
4. Conclusion:
- Since [tex]\( 7^x \)[/tex] grows exponentially as [tex]\( x \)[/tex] increases and the constant term [tex]\( +3 \)[/tex] merely shifts the graph upward, the overall function [tex]\( f(x) = 7^x + 3 \)[/tex] represents exponential growth.
Thus, the function [tex]\( f(x) = 7^x + 3 \)[/tex] indeed represents exponential growth, leading us to conclude that the correct answer is:
D) Exponential growth
1. Understanding the Base of the Exponential Function:
- In the function [tex]\( f(x) = 7^x + 3 \)[/tex], the term [tex]\( 7^x \)[/tex] is an exponential expression with a base of 7.
- The base of an exponential function dictates whether it exhibits growth or decay. When the base [tex]\( b \)[/tex] of [tex]\( b^x \)[/tex] is greater than 1, the function [tex]\( b^x \)[/tex] shows exponential growth. Conversely, if [tex]\( 0 < b < 1 \)[/tex], the function shows exponential decay.
2. Evaluating the Given Function:
- Here, the base of the exponent is 7, which is greater than 1.
- Therefore, the term [tex]\( 7^x \)[/tex] by itself represents exponential growth.
3. Effect of the Constant Term:
- The function [tex]\( f(x) = 7^x + 3 \)[/tex] includes an additional constant term +3.
- Adding a constant to an exponential function shifts the graph vertically but does not affect the growth or decay nature of the exponential term.
4. Conclusion:
- Since [tex]\( 7^x \)[/tex] grows exponentially as [tex]\( x \)[/tex] increases and the constant term [tex]\( +3 \)[/tex] merely shifts the graph upward, the overall function [tex]\( f(x) = 7^x + 3 \)[/tex] represents exponential growth.
Thus, the function [tex]\( f(x) = 7^x + 3 \)[/tex] indeed represents exponential growth, leading us to conclude that the correct answer is:
D) Exponential growth
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.