Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve this problem step-by-step:
### Account A:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 8% or 0.08 3. Term of investment (t): 8 years 4. Compounding frequency (n): 1 time per year (since interest is compounded annually) To calculate the final amount in Account A, we will use the compound interest formula: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Plugging in the values: \[ A = 50000 \left( 1 + \frac{0.08}{1} \right)^{1 \times 8} \] \[ A = 50000 (1 + 0.08)^8 \] \[ A = 50000 (1.08)^8 \] Performing the calculation: \[ (1.08)^8 \approx 1.85093 \] \[ A \approx 50000 \times 1.85093 \] \[ A \approx 92546.51 \] So, the final amount in Account A after 8 years is approximately \$[/tex]92,546.51.
### Account B:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 7% or 0.07 3. Term of investment (t): 10 years To calculate the final amount in Account B, we will use the formula for continuous compounding: \[ A = Pe^{rt} \] Plugging in the values: \[ A = 50000 \times e^{0.07 \times 10} \] \[ A = 50000 \times e^{0.7} \] We know that \( e^{0.7} \approx 2.01424 \): \[ A \approx 50000 \times 2.01424 \] \[ A \approx 100687.64 \] So, the final amount in Account B after 10 years is approximately \$[/tex]100,687.64.
### Conclusion:
Comparing the final amounts:
- Account A: \[tex]$92,546.51 - Account B: \$[/tex]100,687.64
The account that earns the greatest amount of interest is Account B. Therefore, the best decision for the customer is to invest in Account B.
### Account A:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 8% or 0.08 3. Term of investment (t): 8 years 4. Compounding frequency (n): 1 time per year (since interest is compounded annually) To calculate the final amount in Account A, we will use the compound interest formula: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Plugging in the values: \[ A = 50000 \left( 1 + \frac{0.08}{1} \right)^{1 \times 8} \] \[ A = 50000 (1 + 0.08)^8 \] \[ A = 50000 (1.08)^8 \] Performing the calculation: \[ (1.08)^8 \approx 1.85093 \] \[ A \approx 50000 \times 1.85093 \] \[ A \approx 92546.51 \] So, the final amount in Account A after 8 years is approximately \$[/tex]92,546.51.
### Account B:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 7% or 0.07 3. Term of investment (t): 10 years To calculate the final amount in Account B, we will use the formula for continuous compounding: \[ A = Pe^{rt} \] Plugging in the values: \[ A = 50000 \times e^{0.07 \times 10} \] \[ A = 50000 \times e^{0.7} \] We know that \( e^{0.7} \approx 2.01424 \): \[ A \approx 50000 \times 2.01424 \] \[ A \approx 100687.64 \] So, the final amount in Account B after 10 years is approximately \$[/tex]100,687.64.
### Conclusion:
Comparing the final amounts:
- Account A: \[tex]$92,546.51 - Account B: \$[/tex]100,687.64
The account that earns the greatest amount of interest is Account B. Therefore, the best decision for the customer is to invest in Account B.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.