Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve this problem step-by-step:
### Account A:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 8% or 0.08 3. Term of investment (t): 8 years 4. Compounding frequency (n): 1 time per year (since interest is compounded annually) To calculate the final amount in Account A, we will use the compound interest formula: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Plugging in the values: \[ A = 50000 \left( 1 + \frac{0.08}{1} \right)^{1 \times 8} \] \[ A = 50000 (1 + 0.08)^8 \] \[ A = 50000 (1.08)^8 \] Performing the calculation: \[ (1.08)^8 \approx 1.85093 \] \[ A \approx 50000 \times 1.85093 \] \[ A \approx 92546.51 \] So, the final amount in Account A after 8 years is approximately \$[/tex]92,546.51.
### Account B:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 7% or 0.07 3. Term of investment (t): 10 years To calculate the final amount in Account B, we will use the formula for continuous compounding: \[ A = Pe^{rt} \] Plugging in the values: \[ A = 50000 \times e^{0.07 \times 10} \] \[ A = 50000 \times e^{0.7} \] We know that \( e^{0.7} \approx 2.01424 \): \[ A \approx 50000 \times 2.01424 \] \[ A \approx 100687.64 \] So, the final amount in Account B after 10 years is approximately \$[/tex]100,687.64.
### Conclusion:
Comparing the final amounts:
- Account A: \[tex]$92,546.51 - Account B: \$[/tex]100,687.64
The account that earns the greatest amount of interest is Account B. Therefore, the best decision for the customer is to invest in Account B.
### Account A:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 8% or 0.08 3. Term of investment (t): 8 years 4. Compounding frequency (n): 1 time per year (since interest is compounded annually) To calculate the final amount in Account A, we will use the compound interest formula: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Plugging in the values: \[ A = 50000 \left( 1 + \frac{0.08}{1} \right)^{1 \times 8} \] \[ A = 50000 (1 + 0.08)^8 \] \[ A = 50000 (1.08)^8 \] Performing the calculation: \[ (1.08)^8 \approx 1.85093 \] \[ A \approx 50000 \times 1.85093 \] \[ A \approx 92546.51 \] So, the final amount in Account A after 8 years is approximately \$[/tex]92,546.51.
### Account B:
1. Initial investment (P): [tex]$50,000 2. Annual interest rate (r): 7% or 0.07 3. Term of investment (t): 10 years To calculate the final amount in Account B, we will use the formula for continuous compounding: \[ A = Pe^{rt} \] Plugging in the values: \[ A = 50000 \times e^{0.07 \times 10} \] \[ A = 50000 \times e^{0.7} \] We know that \( e^{0.7} \approx 2.01424 \): \[ A \approx 50000 \times 2.01424 \] \[ A \approx 100687.64 \] So, the final amount in Account B after 10 years is approximately \$[/tex]100,687.64.
### Conclusion:
Comparing the final amounts:
- Account A: \[tex]$92,546.51 - Account B: \$[/tex]100,687.64
The account that earns the greatest amount of interest is Account B. Therefore, the best decision for the customer is to invest in Account B.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.