Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What transformation transforms [tex]\((a, b)\)[/tex] to [tex]\((a, -b)\)[/tex]?

A. a reflection over the [tex]\(y\)[/tex]-axis
B. a translation of 1 unit down
C. a translation of 1 unit up
D. a reflection over the [tex]\(x\)[/tex]-axis


Sagot :

Sure, let's go through the transformations and see which one correctly transforms the point [tex]\((a, b)\)[/tex] into [tex]\((a, -b)\)[/tex].

1. A reflection over the [tex]$y$[/tex]-axis:
- Reflecting over the [tex]$y$[/tex]-axis changes the sign of the [tex]$x$[/tex]-coordinate while keeping the [tex]$y$[/tex]-coordinate the same. This would transform [tex]\((a, b)\)[/tex] into [tex]\((-a, b)\)[/tex], not [tex]\((a, -b)\)[/tex].

2. A translation of 1 unit down:
- Translating a point 1 unit down would decrease the [tex]$y$[/tex]-coordinate by 1. This would transform [tex]\((a, b)\)[/tex] into [tex]\((a, b-1)\)[/tex], not [tex]\((a, -b)\)[/tex].

3. A translation of 1 unit up:
- Translating a point 1 unit up would increase the [tex]$y$[/tex]-coordinate by 1. This would transform [tex]\((a, b)\)[/tex] into [tex]\((a, b+1)\)[/tex], not [tex]\((a, -b)\)[/tex].

4. A reflection over the [tex]$x$[/tex]-axis:
- Reflecting over the [tex]$x$[/tex]-axis changes the sign of the [tex]$y$[/tex]-coordinate while keeping the [tex]$x$[/tex]-coordinate the same. This would transform [tex]\((a, b)\)[/tex] into [tex]\((a, -b)\)[/tex], which is exactly what we are looking for.

Therefore, the correct transformation that transforms [tex]\((a, b)\)[/tex] to [tex]\((a, -b)\)[/tex] is:

A reflection over the [tex]$x$[/tex]-axis.

So the answer is:

[tex]\[ \boxed{4} \][/tex]