Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the length (magnitude) of the vector [tex]\((6, -3)\)[/tex], follow these steps:
1. Identify the components of the vector: The vector is given as [tex]\((6, -3)\)[/tex], where [tex]\(6\)[/tex] is the [tex]\(x\)[/tex]-component and [tex]\(-3\)[/tex] is the [tex]\(y\)[/tex]-component.
2. Use the formula for the magnitude of a vector: The magnitude [tex]\( \| \mathbf{v} \| \)[/tex] of a vector [tex]\(\mathbf{v} = (x, y)\)[/tex] is given by the formula:
[tex]\[ \| \mathbf{v} \| = \sqrt{x^2 + y^2} \][/tex]
3. Substitute the components into the formula:
[tex]\[ \| (6, -3) \| = \sqrt{6^2 + (-3)^2} \][/tex]
4. Calculate the squares of the components:
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
5. Add the squared values:
[tex]\[ 36 + 9 = 45 \][/tex]
6. Take the square root of the sum:
[tex]\[ \sqrt{45} = 3\sqrt{5} \][/tex]
Therefore, the magnitude of the vector [tex]\((6, -3)\)[/tex] is [tex]\(3\sqrt{5}\)[/tex].
So, the correct answer is:
C. [tex]\(3\sqrt{5}\)[/tex]
1. Identify the components of the vector: The vector is given as [tex]\((6, -3)\)[/tex], where [tex]\(6\)[/tex] is the [tex]\(x\)[/tex]-component and [tex]\(-3\)[/tex] is the [tex]\(y\)[/tex]-component.
2. Use the formula for the magnitude of a vector: The magnitude [tex]\( \| \mathbf{v} \| \)[/tex] of a vector [tex]\(\mathbf{v} = (x, y)\)[/tex] is given by the formula:
[tex]\[ \| \mathbf{v} \| = \sqrt{x^2 + y^2} \][/tex]
3. Substitute the components into the formula:
[tex]\[ \| (6, -3) \| = \sqrt{6^2 + (-3)^2} \][/tex]
4. Calculate the squares of the components:
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
5. Add the squared values:
[tex]\[ 36 + 9 = 45 \][/tex]
6. Take the square root of the sum:
[tex]\[ \sqrt{45} = 3\sqrt{5} \][/tex]
Therefore, the magnitude of the vector [tex]\((6, -3)\)[/tex] is [tex]\(3\sqrt{5}\)[/tex].
So, the correct answer is:
C. [tex]\(3\sqrt{5}\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.