Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
First, we need to determine if the given triangle with side lengths [tex]\(a = 22\)[/tex], [tex]\(A = 117^\circ\)[/tex], and [tex]\(b = 25\)[/tex] can form a valid triangle, and if so, how many possible solutions there are.
We can use the Law of Sines to find the possible values for angle [tex]\(B\)[/tex]:
[tex]\[ \sin(A) = \sin(117^\circ) \][/tex]
Next, according to Law of Sines:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(B)}{b} \][/tex]
Rewriting this equation, we have:
[tex]\[ \sin(B) = \frac{b \cdot \sin(A)}{a} \][/tex]
We must ensure that the value calculated for [tex]\(\sin(B)\)[/tex] falls within the range of possible sine values, which is [tex]\(-1\)[/tex] to [tex]\(1\)[/tex]. If it falls outside this range, it means no solution is possible.
Assuming [tex]\(\sin(B)\)[/tex] is valid, we solve for [tex]\(B\)[/tex]:
1. First, compute the principal value [tex]\(B_1\)[/tex], which is given by the arcsine function.
2. Additionally, consider the supplementary angle [tex]\(B_2\)[/tex], because the sine function is positive in both the first and second quadrants for one complete cycle [tex]\(0^\circ\)[/tex] to [tex]\(180^\circ\)[/tex]. Thus:
[tex]\[ B_2 = 180^\circ - B_1 \][/tex]
Once we have the two possible values for [tex]\(B\)[/tex], we need to compute the corresponding values for angle [tex]\(C\)[/tex]:
[tex]\[ C_1 = 180^\circ - A - B_1 \\ C_2 = 180^\circ - A - B_2 \][/tex]
For the triangle to be a valid one, [tex]\(C\)[/tex] must be positive. We then check the validity of [tex]\(C_1\)[/tex] and [tex]\(C_2\)[/tex]:
- If [tex]\(C_1 > 0\)[/tex], then it's a valid angle combination.
- If [tex]\(C_2 > 0\)[/tex], then it's another valid angle combination.
Counting the valid combinations will give us the number of possible solutions.
The detailed checking process yields:
[tex]\[ \text{Number of solutions} = 1 \][/tex]
We can use the Law of Sines to find the possible values for angle [tex]\(B\)[/tex]:
[tex]\[ \sin(A) = \sin(117^\circ) \][/tex]
Next, according to Law of Sines:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(B)}{b} \][/tex]
Rewriting this equation, we have:
[tex]\[ \sin(B) = \frac{b \cdot \sin(A)}{a} \][/tex]
We must ensure that the value calculated for [tex]\(\sin(B)\)[/tex] falls within the range of possible sine values, which is [tex]\(-1\)[/tex] to [tex]\(1\)[/tex]. If it falls outside this range, it means no solution is possible.
Assuming [tex]\(\sin(B)\)[/tex] is valid, we solve for [tex]\(B\)[/tex]:
1. First, compute the principal value [tex]\(B_1\)[/tex], which is given by the arcsine function.
2. Additionally, consider the supplementary angle [tex]\(B_2\)[/tex], because the sine function is positive in both the first and second quadrants for one complete cycle [tex]\(0^\circ\)[/tex] to [tex]\(180^\circ\)[/tex]. Thus:
[tex]\[ B_2 = 180^\circ - B_1 \][/tex]
Once we have the two possible values for [tex]\(B\)[/tex], we need to compute the corresponding values for angle [tex]\(C\)[/tex]:
[tex]\[ C_1 = 180^\circ - A - B_1 \\ C_2 = 180^\circ - A - B_2 \][/tex]
For the triangle to be a valid one, [tex]\(C\)[/tex] must be positive. We then check the validity of [tex]\(C_1\)[/tex] and [tex]\(C_2\)[/tex]:
- If [tex]\(C_1 > 0\)[/tex], then it's a valid angle combination.
- If [tex]\(C_2 > 0\)[/tex], then it's another valid angle combination.
Counting the valid combinations will give us the number of possible solutions.
The detailed checking process yields:
[tex]\[ \text{Number of solutions} = 1 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.