Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's carefully examine each of the given statements to determine their validity:
Statement A: [tex]\(w = -2v\)[/tex]
To check this, we can verify if [tex]\( w \)[/tex] is equal to [tex]\(-2\)[/tex] times [tex]\( v \)[/tex]. The given vectors are:
[tex]\[ v = (5, -2) \][/tex]
[tex]\[ w = (-10, 4) \][/tex]
Now, let's calculate [tex]\(-2 \times v\)[/tex]:
[tex]\[ -2 \times v = -2 \times (5, -2) = (-10, 4) \][/tex]
Since [tex]\( w = (-10, 4) \)[/tex] matches [tex]\(-2 \times v \)[/tex], this statement is True.
Statement B: The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is [tex]\( 4 e_2 \)[/tex]
The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is 4. In a two-dimensional space, [tex]\( e_2 \)[/tex] represents the unit vector along the y-axis, which is [tex]\( (0, 1) \)[/tex]. Thus, [tex]\( 4 e_2 \)[/tex] means 4 times the unit vector along the y-axis:
[tex]\[ 4 \times (0, 1) = (0, 4) \][/tex]
Here, the [tex]\( y \)[/tex]-component of [tex]\( w = (-10, 4) \)[/tex] is indeed 4, so this statement is True.
Statement C: [tex]\( v \cdot w = -58 \)[/tex]
The dot product of [tex]\( v \)[/tex] and [tex]\( w \)[/tex] is computed as follows:
[tex]\[ v \cdot w = (5 \times -10) + (-2 \times 4) \][/tex]
[tex]\[ v \cdot w = -50 - 8 \][/tex]
[tex]\[ v \cdot w = -58 \][/tex]
Since the calculation confirms this value, this statement is True.
Statement D: [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are perpendicular
Two vectors are perpendicular if their dot product is zero. We already computed the dot product:
[tex]\[ v \cdot w = -58 \][/tex]
Since [tex]\(-58 \neq 0\)[/tex], the vectors [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are not perpendicular. Thus, this statement is False.
In summary, the statements which are true are:
- A. [tex]\( w = -2 v \)[/tex]
- B. The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is [tex]\( 4 e_2 \)[/tex]
- C. [tex]\( v \cdot w = -58 \)[/tex]
And the false statement is:
- D. [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are perpendicular.
Statement A: [tex]\(w = -2v\)[/tex]
To check this, we can verify if [tex]\( w \)[/tex] is equal to [tex]\(-2\)[/tex] times [tex]\( v \)[/tex]. The given vectors are:
[tex]\[ v = (5, -2) \][/tex]
[tex]\[ w = (-10, 4) \][/tex]
Now, let's calculate [tex]\(-2 \times v\)[/tex]:
[tex]\[ -2 \times v = -2 \times (5, -2) = (-10, 4) \][/tex]
Since [tex]\( w = (-10, 4) \)[/tex] matches [tex]\(-2 \times v \)[/tex], this statement is True.
Statement B: The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is [tex]\( 4 e_2 \)[/tex]
The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is 4. In a two-dimensional space, [tex]\( e_2 \)[/tex] represents the unit vector along the y-axis, which is [tex]\( (0, 1) \)[/tex]. Thus, [tex]\( 4 e_2 \)[/tex] means 4 times the unit vector along the y-axis:
[tex]\[ 4 \times (0, 1) = (0, 4) \][/tex]
Here, the [tex]\( y \)[/tex]-component of [tex]\( w = (-10, 4) \)[/tex] is indeed 4, so this statement is True.
Statement C: [tex]\( v \cdot w = -58 \)[/tex]
The dot product of [tex]\( v \)[/tex] and [tex]\( w \)[/tex] is computed as follows:
[tex]\[ v \cdot w = (5 \times -10) + (-2 \times 4) \][/tex]
[tex]\[ v \cdot w = -50 - 8 \][/tex]
[tex]\[ v \cdot w = -58 \][/tex]
Since the calculation confirms this value, this statement is True.
Statement D: [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are perpendicular
Two vectors are perpendicular if their dot product is zero. We already computed the dot product:
[tex]\[ v \cdot w = -58 \][/tex]
Since [tex]\(-58 \neq 0\)[/tex], the vectors [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are not perpendicular. Thus, this statement is False.
In summary, the statements which are true are:
- A. [tex]\( w = -2 v \)[/tex]
- B. The [tex]\( y \)[/tex]-component of [tex]\( w \)[/tex] is [tex]\( 4 e_2 \)[/tex]
- C. [tex]\( v \cdot w = -58 \)[/tex]
And the false statement is:
- D. [tex]\( v \)[/tex] and [tex]\( w \)[/tex] are perpendicular.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.