Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

1. Given the following non-singular matrices

[tex]\[A = \left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & -2 & 3 \\ -2 & 1 & 2\end{array}\right] \quad \text{and} \quad B = \left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 3 \\ 2 & -1 & 1\end{array}\right]\][/tex]

Show that:
i. [tex]\((AB)^T = B^T A^T\)[/tex]

ii. [tex]\(\operatorname{trace}(AB) = \operatorname{trace}(BA)\)[/tex]


Sagot :

Certainly! Let's go through each part step by step.

### Part (i): Show that [tex]\((AB)^T = B^T A^T\)[/tex]

1. Define Matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ -2 & 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 3 \\ 2 & -1 & 1 \end{bmatrix} \][/tex]

2. Calculate the Product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ -2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 3 \\ 2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 6 \\ 11 & -7 & -1 \\ 0 & 3 & 1 \end{bmatrix} \][/tex]

3. Calculate the Transpose of [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{bmatrix} -2 & 11 & 0 \\ -2 & -7 & 3 \\ 6 & -1 & 1 \end{bmatrix} \][/tex]

4. Calculate the Transpose of [tex]\(B\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ B^T = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & 3 & 1 \end{bmatrix}, \quad A^T = \begin{bmatrix} 2 & 1 & -2 \\ 1 & -2 & 1 \\ -1 & 3 & 2 \end{bmatrix} \][/tex]

5. Calculate the Product [tex]\(B^T A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 1 & -2 & 1 \\ -1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 6 \\ 11 & -7 & -1 \\ 0 & 3 & 1 \end{bmatrix} \][/tex]

6. Transpose of [tex]\(B^T A^T\)[/tex]:
[tex]\[ (B^T A^T)^T = \begin{bmatrix} -2 & 11 & 0 \\ -2 & -7 & 3 \\ 6 & -1 & 1 \end{bmatrix} \][/tex]

Clearly,
[tex]\((AB)^T = B^T A^T\)[/tex].

### Part (ii): Show that [tex]\(\text{trace}(AB) = \text{trace}(BA)\)[/tex]

1. Calculate the Product [tex]\(BA\)[/tex]:
[tex]\[ BA = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 3 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ -2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 11 & 0 \\ -2 & -7 & 3 \\ 6 & -1 & 1 \end{bmatrix} \][/tex]

2. Calculate [tex]\(\text{trace}(AB)\)[/tex]:
[tex]\[ \text{trace}(AB) = -2 + (-7) + 1 = -8 \][/tex]

3. Calculate [tex]\(\text{trace}(BA)\)[/tex]:
[tex]\[ \text{trace}(BA) = -2 + (-7) + 1 = -8 \][/tex]

Thus, [tex]\(\text{trace}(AB) = \text{trace}(BA)\)[/tex].

### Conclusion

We have shown that:
1. [tex]\((AB)^T = B^T A^T\)[/tex]
2. [tex]\(\text{trace}(AB) = \text{trace}(BA)\)[/tex]

Both conditions are satisfied for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].