At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly, let's solve the problem step-by-step:
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.