Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly, let's solve the problem step-by-step:
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Given Problem
Let [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] be a random sample of size 2 from a distribution with the probability mass function:
[tex]\[ f(x) = \begin{cases} \frac{1}{4}, & \text{for } x = 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases} \][/tex]
We need to find:
a) The probability distribution of [tex]\( T = X_1 + X_2 \)[/tex].
b) The mean and variance of [tex]\( T = X_1 + X_2 \)[/tex].
c) The probability that [tex]\( T > 3 \)[/tex].
### a) The Probability Distribution of [tex]\( T = X_1 + X_2 \)[/tex]
First, we list all possible values of [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex]:
[tex]\[ X_1, X_2 \in \{1, 2, 3, 4\} \][/tex]
By summing [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex], we can find the possible values of [tex]\( T = X_1 + X_2 \)[/tex] and their respective probabilities. The possible values of [tex]\( T \)[/tex] range from [tex]\( 2 \)[/tex] (i.e., [tex]\( 1+1 \)[/tex]) to [tex]\( 8 \)[/tex] (i.e., [tex]\( 4+4 \)[/tex]).
All combinations and their counts:
[tex]\[ \begin{aligned} &E(2): 1+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ &E(3): 1+2, 2+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(4): 1+3, 2+2, 3+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(5): 1+4, 2+3, 3+2, 4+1 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 4 = 0.25 \\ &E(6): 2+4, 3+3, 4+2 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 3 = 0.1875 \\ &E(7): 3+4, 4+3 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} \times 2 = 0.125 \\ &E(8): 4+4 &\Rightarrow \text{Probability: } \frac{1}{4} \cdot \frac{1}{4} = 0.0625 \\ \end{aligned} \][/tex]
So the probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
### b) The Mean and Variance of [tex]\( T = X_1 + X_2 \)[/tex]
#### Mean of [tex]\( T \)[/tex]:
The mean (expected value) [tex]\( E(T) \)[/tex] can be calculated as:
[tex]\[ E(T) = \sum_{t=2}^{8} t \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T) = 2 \cdot 0.0625 + 3 \cdot 0.125 + 4 \cdot 0.1875 + 5 \cdot 0.25 + 6 \cdot 0.1875 + 7 \cdot 0.125 + 8 \cdot 0.0625 = 5.0 \][/tex]
#### Variance of [tex]\( T \)[/tex]:
First, compute [tex]\( E(T^2) \)[/tex]:
[tex]\[ E(T^2) = \sum_{t=2}^{8} t^2 \cdot P(T=t) \][/tex]
Substituting the values:
[tex]\[ E(T^2) = 2^2 \cdot 0.0625 + 3^2 \cdot 0.125 + 4^2 \cdot 0.1875 + 5^2 \cdot 0.25 + 6^2 \cdot 0.1875 + 7^2 \cdot 0.125 + 8^2 \cdot 0.0625 = 27.5 \][/tex]
Now, use the formula for variance:
[tex]\[ \text{Var}(T) = E(T^2) - \left(E(T)\right)^2 = 27.5 - 5^2 = 27.5 - 25 = 2.5 \][/tex]
So, the mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
### c) The Probability that [tex]\( T > 3 \)[/tex]
To find [tex]\( P(T > 3) \)[/tex]:
[tex]\[ P(T > 3) = P(T=4) + P(T=5) + P(T=6) + P(T=7) + P(T=8) \][/tex]
Substituting the values:
[tex]\[ P(T > 3) = 0.1875 + 0.25 + 0.1875 + 0.125 + 0.0625 = 0.8125 \][/tex]
So, the probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
### Summary
a) The probability distribution of [tex]\( T \)[/tex] is:
[tex]\[ \{2: 0.0625, 3: 0.125, 4: 0.1875, 5: 0.25, 6: 0.1875, 7: 0.125, 8: 0.0625\} \][/tex]
b) The mean and variance of [tex]\( T \)[/tex] are:
[tex]\[ \text{Mean} = 5.0, \quad \text{Variance} = 2.5 \][/tex]
c) The probability that [tex]\( T > 3 \)[/tex] is:
[tex]\[ P(T > 3) = 0.8125 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.