Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine whether the events [tex]\( A \)[/tex] (the person has gone surfing) and [tex]\( B \)[/tex] (the person has gone snowboarding) are independent, we need to compare the probability of [tex]\( A \)[/tex] given [tex]\( B \)[/tex] with the probability of [tex]\( A \)[/tex].
First, let's find the individual probabilities:
1. Probability of A:
[tex]\( P(A) \)[/tex] is the probability that a randomly chosen student has gone surfing.
[tex]\[ P(A) = \frac{\text{Number of students who have gone surfing}}{\text{Total number of students}} = \frac{225}{300} = 0.75 \][/tex]
2. Probability of B:
[tex]\( P(B) \)[/tex] is the probability that a randomly chosen student has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Number of students who have gone snowboarding}}{\text{Total number of students}} = \frac{48}{300} = 0.16 \][/tex]
3. Conditional Probability [tex]\( P(A \mid B) \)[/tex]:
[tex]\( P(A \mid B) \)[/tex] is the probability of having gone surfing given that the student has gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of students who have gone surfing and snowboarding}}{\text{Number of students who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
To check if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex].
Given:
[tex]\[ P(A \mid B) = 0.75 \][/tex]
[tex]\[ P(A) = 0.75 \][/tex]
Since [tex]\( P(A \mid B) = P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
[tex]$A$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(A \mid B)=P(A)=0.75$[/tex].
First, let's find the individual probabilities:
1. Probability of A:
[tex]\( P(A) \)[/tex] is the probability that a randomly chosen student has gone surfing.
[tex]\[ P(A) = \frac{\text{Number of students who have gone surfing}}{\text{Total number of students}} = \frac{225}{300} = 0.75 \][/tex]
2. Probability of B:
[tex]\( P(B) \)[/tex] is the probability that a randomly chosen student has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Number of students who have gone snowboarding}}{\text{Total number of students}} = \frac{48}{300} = 0.16 \][/tex]
3. Conditional Probability [tex]\( P(A \mid B) \)[/tex]:
[tex]\( P(A \mid B) \)[/tex] is the probability of having gone surfing given that the student has gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of students who have gone surfing and snowboarding}}{\text{Number of students who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
To check if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex].
Given:
[tex]\[ P(A \mid B) = 0.75 \][/tex]
[tex]\[ P(A) = 0.75 \][/tex]
Since [tex]\( P(A \mid B) = P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
[tex]$A$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(A \mid B)=P(A)=0.75$[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.