Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the events [tex]\( A \)[/tex] (the person has gone surfing) and [tex]\( B \)[/tex] (the person has gone snowboarding) are independent, we need to compare the probability of [tex]\( A \)[/tex] given [tex]\( B \)[/tex] with the probability of [tex]\( A \)[/tex].
First, let's find the individual probabilities:
1. Probability of A:
[tex]\( P(A) \)[/tex] is the probability that a randomly chosen student has gone surfing.
[tex]\[ P(A) = \frac{\text{Number of students who have gone surfing}}{\text{Total number of students}} = \frac{225}{300} = 0.75 \][/tex]
2. Probability of B:
[tex]\( P(B) \)[/tex] is the probability that a randomly chosen student has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Number of students who have gone snowboarding}}{\text{Total number of students}} = \frac{48}{300} = 0.16 \][/tex]
3. Conditional Probability [tex]\( P(A \mid B) \)[/tex]:
[tex]\( P(A \mid B) \)[/tex] is the probability of having gone surfing given that the student has gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of students who have gone surfing and snowboarding}}{\text{Number of students who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
To check if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex].
Given:
[tex]\[ P(A \mid B) = 0.75 \][/tex]
[tex]\[ P(A) = 0.75 \][/tex]
Since [tex]\( P(A \mid B) = P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
[tex]$A$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(A \mid B)=P(A)=0.75$[/tex].
First, let's find the individual probabilities:
1. Probability of A:
[tex]\( P(A) \)[/tex] is the probability that a randomly chosen student has gone surfing.
[tex]\[ P(A) = \frac{\text{Number of students who have gone surfing}}{\text{Total number of students}} = \frac{225}{300} = 0.75 \][/tex]
2. Probability of B:
[tex]\( P(B) \)[/tex] is the probability that a randomly chosen student has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Number of students who have gone snowboarding}}{\text{Total number of students}} = \frac{48}{300} = 0.16 \][/tex]
3. Conditional Probability [tex]\( P(A \mid B) \)[/tex]:
[tex]\( P(A \mid B) \)[/tex] is the probability of having gone surfing given that the student has gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of students who have gone surfing and snowboarding}}{\text{Number of students who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
To check if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex].
Given:
[tex]\[ P(A \mid B) = 0.75 \][/tex]
[tex]\[ P(A) = 0.75 \][/tex]
Since [tex]\( P(A \mid B) = P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
[tex]$A$[/tex] and [tex]$B$[/tex] are independent events because [tex]$P(A \mid B)=P(A)=0.75$[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.