At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the given expression [tex]\(\frac{1}{x^2-5x+6} + \frac{2}{4x-x^2-3}\)[/tex], let's break it down step-by-step and combine the fractions appropriately.
Step 1: Factorize the denominators of both fractions.
- For [tex]\(x^2 - 5x + 6\)[/tex]:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
- For [tex]\(4x - x^2 - 3\)[/tex]:
[tex]\[ 4x - x^2 - 3 = - (x^2 - 4x + 3) = - ((x-1)(x-3)) \][/tex]
Now the expression looks like:
[tex]\[ \frac{1}{(x-2)(x-3)} + \frac{2}{-(x-1)(x-3)} \][/tex]
Step 2: Adjust the signs to combine under a common denominator:
[tex]\[ \frac{1}{(x-2)(x-3)} - \frac{2}{(x-1)(x-3)} \][/tex]
Step 3: Determine the common denominator, which is [tex]\((x-2)(x-3)(x-1)\)[/tex]:
[tex]\[ \frac{(x-1) \cdot 1 - 2 \cdot (x-2)}{(x-2)(x-3)(x-1)} \][/tex]
Step 4: Simplify the numerator:
[tex]\[ (x-1) - 2(x-2) = x - 1 - 2x + 4 = -x + 3 \][/tex]
So, the expression becomes:
[tex]\[ \frac{-x + 3}{(x-2)(x-3)(x-1)} \][/tex]
Step 5: Notice that [tex]\(-x + 3\)[/tex] can be written as [tex]\(-(x - 3)\)[/tex], hence:
[tex]\[ \frac{-(x - 3)}{(x-2)(x-3)(x-1)} \][/tex]
Cancelling the common [tex]\((x - 3)\)[/tex] term in the numerator and denominator, we get:
[tex]\[ \frac{-1}{(x-2)(x-1)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{-1}{(x^2 - 3x + 2)}} \][/tex]
This is the simplified form of the given expression as required.
Step 1: Factorize the denominators of both fractions.
- For [tex]\(x^2 - 5x + 6\)[/tex]:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
- For [tex]\(4x - x^2 - 3\)[/tex]:
[tex]\[ 4x - x^2 - 3 = - (x^2 - 4x + 3) = - ((x-1)(x-3)) \][/tex]
Now the expression looks like:
[tex]\[ \frac{1}{(x-2)(x-3)} + \frac{2}{-(x-1)(x-3)} \][/tex]
Step 2: Adjust the signs to combine under a common denominator:
[tex]\[ \frac{1}{(x-2)(x-3)} - \frac{2}{(x-1)(x-3)} \][/tex]
Step 3: Determine the common denominator, which is [tex]\((x-2)(x-3)(x-1)\)[/tex]:
[tex]\[ \frac{(x-1) \cdot 1 - 2 \cdot (x-2)}{(x-2)(x-3)(x-1)} \][/tex]
Step 4: Simplify the numerator:
[tex]\[ (x-1) - 2(x-2) = x - 1 - 2x + 4 = -x + 3 \][/tex]
So, the expression becomes:
[tex]\[ \frac{-x + 3}{(x-2)(x-3)(x-1)} \][/tex]
Step 5: Notice that [tex]\(-x + 3\)[/tex] can be written as [tex]\(-(x - 3)\)[/tex], hence:
[tex]\[ \frac{-(x - 3)}{(x-2)(x-3)(x-1)} \][/tex]
Cancelling the common [tex]\((x - 3)\)[/tex] term in the numerator and denominator, we get:
[tex]\[ \frac{-1}{(x-2)(x-1)} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{-1}{(x^2 - 3x + 2)}} \][/tex]
This is the simplified form of the given expression as required.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.