At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem of finding the ratio of the sides of a rectangle where the diagonal is thrice the smaller side, we'll follow these steps:
1. Define Variables:
- Let the smaller side of the rectangle be [tex]\( a \)[/tex].
- Let the larger side of the rectangle be [tex]\( b \)[/tex].
2. Apply the Pythagorean Theorem:
- For a rectangle, the diagonal forms a right triangle with the sides.
- So, the length of the diagonal can be expressed using Pythagoras' theorem as:
[tex]\[ \sqrt{a^2 + b^2} \][/tex]
3. Given Condition:
- The diagonal is thrice the smaller side, meaning:
[tex]\[ \text{Diagonal} = 3a \][/tex]
- Hence, we have the equation:
[tex]\[ 3a = \sqrt{a^2 + b^2} \][/tex]
4. Solve for [tex]\( b \)[/tex]:
- Square both sides of the equation to eliminate the square root:
[tex]\[ (3a)^2 = a^2 + b^2 \][/tex]
- Simplify the equation:
[tex]\[ 9a^2 = a^2 + b^2 \][/tex]
- Subtract [tex]\( a^2 \)[/tex] from both sides:
[tex]\[ 8a^2 = b^2 \][/tex]
- Take the square root of both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \sqrt{8a^2} = \sqrt{8} \cdot a = 2\sqrt{2} \cdot a \][/tex]
5. Determine the Ratio:
- The ratio of the larger side to the smaller side [tex]\( \frac{b}{a} \)[/tex] is:
[tex]\[ \frac{b}{a} = \frac{2\sqrt{2} \cdot a}{a} = 2\sqrt{2} \][/tex]
Thus, the ratio of the sides of the rectangle is [tex]\( 2\sqrt{2} \)[/tex].
1. Define Variables:
- Let the smaller side of the rectangle be [tex]\( a \)[/tex].
- Let the larger side of the rectangle be [tex]\( b \)[/tex].
2. Apply the Pythagorean Theorem:
- For a rectangle, the diagonal forms a right triangle with the sides.
- So, the length of the diagonal can be expressed using Pythagoras' theorem as:
[tex]\[ \sqrt{a^2 + b^2} \][/tex]
3. Given Condition:
- The diagonal is thrice the smaller side, meaning:
[tex]\[ \text{Diagonal} = 3a \][/tex]
- Hence, we have the equation:
[tex]\[ 3a = \sqrt{a^2 + b^2} \][/tex]
4. Solve for [tex]\( b \)[/tex]:
- Square both sides of the equation to eliminate the square root:
[tex]\[ (3a)^2 = a^2 + b^2 \][/tex]
- Simplify the equation:
[tex]\[ 9a^2 = a^2 + b^2 \][/tex]
- Subtract [tex]\( a^2 \)[/tex] from both sides:
[tex]\[ 8a^2 = b^2 \][/tex]
- Take the square root of both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \sqrt{8a^2} = \sqrt{8} \cdot a = 2\sqrt{2} \cdot a \][/tex]
5. Determine the Ratio:
- The ratio of the larger side to the smaller side [tex]\( \frac{b}{a} \)[/tex] is:
[tex]\[ \frac{b}{a} = \frac{2\sqrt{2} \cdot a}{a} = 2\sqrt{2} \][/tex]
Thus, the ratio of the sides of the rectangle is [tex]\( 2\sqrt{2} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.