Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the fraction [tex]\(\frac{6}{9}\)[/tex] produces a repeating decimal, let's go through the following steps:
1. Simplify the Fraction:
Begin by simplifying the fraction [tex]\(\frac{6}{9}\)[/tex]. The greatest common divisor (GCD) of 6 and 9 is 3.
So, we can divide both the numerator and the denominator by 3:
[tex]\[ \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \][/tex]
2. Convert the Simplified Fraction to a Decimal:
Now, consider the simplified fraction [tex]\(\frac{2}{3}\)[/tex]. To convert [tex]\(\frac{2}{3}\)[/tex] to a decimal, we perform the division [tex]\(2 \div 3\)[/tex]:
[tex]\[ 2 \div 3 = 0.6666\ldots \][/tex]
The decimal representation [tex]\(0.6666\ldots\)[/tex] repeats indefinitely, which can be written as [tex]\(0.\overline{6}\)[/tex].
3. Identify the Repeating Nature:
Because the decimal representation is [tex]\(0.\overline{6}\)[/tex], it indicates that the digit 6 repeats indefinitely.
Given this analysis, we conclude that the fraction [tex]\(\frac{6}{9}\)[/tex] indeed produces a repeating decimal, represented as [tex]\(0.\overline{6}\)[/tex].
Thus, the answer to the question is:
A. True
1. Simplify the Fraction:
Begin by simplifying the fraction [tex]\(\frac{6}{9}\)[/tex]. The greatest common divisor (GCD) of 6 and 9 is 3.
So, we can divide both the numerator and the denominator by 3:
[tex]\[ \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \][/tex]
2. Convert the Simplified Fraction to a Decimal:
Now, consider the simplified fraction [tex]\(\frac{2}{3}\)[/tex]. To convert [tex]\(\frac{2}{3}\)[/tex] to a decimal, we perform the division [tex]\(2 \div 3\)[/tex]:
[tex]\[ 2 \div 3 = 0.6666\ldots \][/tex]
The decimal representation [tex]\(0.6666\ldots\)[/tex] repeats indefinitely, which can be written as [tex]\(0.\overline{6}\)[/tex].
3. Identify the Repeating Nature:
Because the decimal representation is [tex]\(0.\overline{6}\)[/tex], it indicates that the digit 6 repeats indefinitely.
Given this analysis, we conclude that the fraction [tex]\(\frac{6}{9}\)[/tex] indeed produces a repeating decimal, represented as [tex]\(0.\overline{6}\)[/tex].
Thus, the answer to the question is:
A. True
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.