Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the given limit step by step:
The problem is to find the limit:
[tex]\[ \gamma = \lim_{n \rightarrow \infty}\left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) \][/tex]
1. Understanding the Harmonic Series:
The sum [tex]\(\sum_{k=1}^n \frac{1}{k}\)[/tex] is known as the [tex]\(n\)[/tex]-th Harmonic number, denoted as [tex]\(H_n\)[/tex]. As [tex]\(n\)[/tex] grows large, the harmonic series [tex]\(H_n\)[/tex] diverges. However, it diverges logarithmically, and is asymptotically close to [tex]\(\ln(n)\)[/tex].
2. Integral Approximation:
We will leverage the approximate relationship between the harmonic series and the natural logarithm. For large [tex]\(n\)[/tex], we have:
[tex]\[ H_n = \sum_{k=1}^n \frac{1}{k} \approx \ln(n) + \gamma \][/tex]
where [tex]\(\gamma\)[/tex] is the Euler-Mascheroni constant.
3. Subtracting [tex]\(\ln(n)\)[/tex]:
To find the specific limit given in the problem, we subtract [tex]\(\ln(n)\)[/tex] from both sides of the approximation:
[tex]\[ \sum_{k=1}^n \frac{1}{k} - \ln(n) \approx \ln(n) + \gamma - \ln(n) = \gamma \][/tex]
4. Taking the Limit:
Since the approximation becomes more accurate as [tex]\(n \rightarrow \infty\)[/tex], the limit is simply the constant term [tex]\(\gamma\)[/tex]:
[tex]\[ \gamma = \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{1}{k} - \ln n \right) \][/tex]
Therefore, the limit is:
[tex]\[ \gamma \][/tex]
This [tex]\(\gamma\)[/tex] is a well-known mathematical constant called the Euler-Mascheroni constant, approximately equal to 0.57721.
The problem is to find the limit:
[tex]\[ \gamma = \lim_{n \rightarrow \infty}\left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) \][/tex]
1. Understanding the Harmonic Series:
The sum [tex]\(\sum_{k=1}^n \frac{1}{k}\)[/tex] is known as the [tex]\(n\)[/tex]-th Harmonic number, denoted as [tex]\(H_n\)[/tex]. As [tex]\(n\)[/tex] grows large, the harmonic series [tex]\(H_n\)[/tex] diverges. However, it diverges logarithmically, and is asymptotically close to [tex]\(\ln(n)\)[/tex].
2. Integral Approximation:
We will leverage the approximate relationship between the harmonic series and the natural logarithm. For large [tex]\(n\)[/tex], we have:
[tex]\[ H_n = \sum_{k=1}^n \frac{1}{k} \approx \ln(n) + \gamma \][/tex]
where [tex]\(\gamma\)[/tex] is the Euler-Mascheroni constant.
3. Subtracting [tex]\(\ln(n)\)[/tex]:
To find the specific limit given in the problem, we subtract [tex]\(\ln(n)\)[/tex] from both sides of the approximation:
[tex]\[ \sum_{k=1}^n \frac{1}{k} - \ln(n) \approx \ln(n) + \gamma - \ln(n) = \gamma \][/tex]
4. Taking the Limit:
Since the approximation becomes more accurate as [tex]\(n \rightarrow \infty\)[/tex], the limit is simply the constant term [tex]\(\gamma\)[/tex]:
[tex]\[ \gamma = \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{1}{k} - \ln n \right) \][/tex]
Therefore, the limit is:
[tex]\[ \gamma \][/tex]
This [tex]\(\gamma\)[/tex] is a well-known mathematical constant called the Euler-Mascheroni constant, approximately equal to 0.57721.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.