Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Calculate the value of [tex]\gamma[/tex]:

[tex]\gamma = \lim _{n \rightarrow \infty} \left( \sum_{k=1}^n \frac{1}{k} - \ln n \right)[/tex]


Sagot :

Sure, let's solve the given limit step by step:

The problem is to find the limit:
[tex]\[ \gamma = \lim_{n \rightarrow \infty}\left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) \][/tex]

1. Understanding the Harmonic Series:
The sum [tex]\(\sum_{k=1}^n \frac{1}{k}\)[/tex] is known as the [tex]\(n\)[/tex]-th Harmonic number, denoted as [tex]\(H_n\)[/tex]. As [tex]\(n\)[/tex] grows large, the harmonic series [tex]\(H_n\)[/tex] diverges. However, it diverges logarithmically, and is asymptotically close to [tex]\(\ln(n)\)[/tex].

2. Integral Approximation:
We will leverage the approximate relationship between the harmonic series and the natural logarithm. For large [tex]\(n\)[/tex], we have:
[tex]\[ H_n = \sum_{k=1}^n \frac{1}{k} \approx \ln(n) + \gamma \][/tex]
where [tex]\(\gamma\)[/tex] is the Euler-Mascheroni constant.

3. Subtracting [tex]\(\ln(n)\)[/tex]:
To find the specific limit given in the problem, we subtract [tex]\(\ln(n)\)[/tex] from both sides of the approximation:
[tex]\[ \sum_{k=1}^n \frac{1}{k} - \ln(n) \approx \ln(n) + \gamma - \ln(n) = \gamma \][/tex]

4. Taking the Limit:
Since the approximation becomes more accurate as [tex]\(n \rightarrow \infty\)[/tex], the limit is simply the constant term [tex]\(\gamma\)[/tex]:
[tex]\[ \gamma = \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{1}{k} - \ln n \right) \][/tex]

Therefore, the limit is:
[tex]\[ \gamma \][/tex]
This [tex]\(\gamma\)[/tex] is a well-known mathematical constant called the Euler-Mascheroni constant, approximately equal to 0.57721.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.