At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for which term of the sequence given by [tex]\( I_n = n^2 - n \)[/tex] equals 72, we need to find the value of [tex]\( n \)[/tex] that satisfies the equation [tex]\( n^2 - n = 72 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.