Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve for which term of the sequence given by [tex]\( I_n = n^2 - n \)[/tex] equals 72, we need to find the value of [tex]\( n \)[/tex] that satisfies the equation [tex]\( n^2 - n = 72 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
1. Set Up the Equation:
We start by writing down the equation representing the sequence:
[tex]\[ n^2 - n = 72 \][/tex]
2. Form a Quadratic Equation:
To solve for [tex]\( n \)[/tex], we rearrange the equation into standard quadratic form:
[tex]\[ n^2 - n - 72 = 0 \][/tex]
3. Solve the Quadratic Equation:
We can solve this quadratic equation, [tex]\( n^2 - n - 72 = 0 \)[/tex], by factoring, completing the square, or using the quadratic formula, [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -72 \)[/tex].
4. Quadratic Formula Application:
Plugging in the values into the quadratic formula, we get:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{2} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{2} \][/tex]
Since [tex]\( \sqrt{289} = 17 \)[/tex]:
[tex]\[ n = \frac{1 \pm 17}{2} \][/tex]
5. Calculating the Roots:
This gives us two potential solutions for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{1 + 17}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ n = \frac{1 - 17}{2} = \frac{-16}{2} = -8 \][/tex]
6. Verify the Solutions:
The quadratic equation yields two solutions: [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
Therefore, the terms of the sequence [tex]\( I_n = n^2 - n \)[/tex] that produce the number 72 are for [tex]\( n = 9 \)[/tex] and [tex]\( n = -8 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.