Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given sets of ordered pairs represents a function, we need to recall that a set of ordered pairs represents a function if and only if no two pairs have the same first element (i.e., each input has a unique output).
Let's analyze each set of ordered pairs given in the options:
### Option A: [tex]\(\{(9, -9), (12, -9), (0, -9), (-9, 12)\}\)[/tex]
- For each pair, we have:
- [tex]\(9 \rightarrow -9\)[/tex]
- [tex]\(12 \rightarrow -9\)[/tex]
- [tex]\(0 \rightarrow -9\)[/tex]
- [tex]\(-9 \rightarrow 12\)[/tex]
Each first element (9, 12, 0, -9) is unique, meaning each input has a unique output. Therefore, this set does represent a function.
### Option B: [tex]\(\{(0, -9), (14, -9), (0, 9), (-9, 14)\}\)[/tex]
- For each pair, we have:
- [tex]\(0 \rightarrow -9\)[/tex]
- [tex]\(14 \rightarrow -9\)[/tex]
- [tex]\(0 \rightarrow 9\)[/tex]
- [tex]\(-9 \rightarrow 14\)[/tex]
Here, the first element 0 appears twice with different outputs: [tex]\(0 \rightarrow -9\)[/tex] and [tex]\(0 \rightarrow 9\)[/tex]. This means that this set does not represent a function because the input 0 is associated with two different outputs.
### Option C: [tex]\(\{(9, 14), (9, 4), (0, 0), (11, 16)\}\)[/tex]
- For each pair, we have:
- [tex]\(9 \rightarrow 14\)[/tex]
- [tex]\(9 \rightarrow 4\)[/tex]
- [tex]\(0 \rightarrow 0\)[/tex]
- [tex]\(11 \rightarrow 16\)[/tex]
Here, the first element 9 appears twice with different outputs: [tex]\(9 \rightarrow 14\)[/tex] and [tex]\(9 \rightarrow 4\)[/tex]. Thus, this set does not represent a function as the input 9 has multiple outputs.
### Option D: [tex]\(\{(-9, 9), (-9, 12), (-9, 0), (12, -9)\}\)[/tex]
- For each pair, we have:
- [tex]\(-9 \rightarrow 9\)[/tex]
- [tex]\(-9 \rightarrow 12\)[/tex]
- [tex]\(-9 \rightarrow 0\)[/tex]
- [tex]\(12 \rightarrow -9\)[/tex]
Here, the first element -9 appears three times with different outputs: [tex]\(-9 \rightarrow 9\)[/tex], [tex]\(-9 \rightarrow 12\)[/tex], and [tex]\(-9 \rightarrow 0\)[/tex]. This means that this set does not represent a function because the input -9 has three different outputs.
### Conclusion:
Based on the analysis, the only set that satisfies the condition of a function (each input having a unique output) is:
- Option A: [tex]\(\{(9, -9), (12, -9), (0, -9), (-9, 12)\}\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
Let's analyze each set of ordered pairs given in the options:
### Option A: [tex]\(\{(9, -9), (12, -9), (0, -9), (-9, 12)\}\)[/tex]
- For each pair, we have:
- [tex]\(9 \rightarrow -9\)[/tex]
- [tex]\(12 \rightarrow -9\)[/tex]
- [tex]\(0 \rightarrow -9\)[/tex]
- [tex]\(-9 \rightarrow 12\)[/tex]
Each first element (9, 12, 0, -9) is unique, meaning each input has a unique output. Therefore, this set does represent a function.
### Option B: [tex]\(\{(0, -9), (14, -9), (0, 9), (-9, 14)\}\)[/tex]
- For each pair, we have:
- [tex]\(0 \rightarrow -9\)[/tex]
- [tex]\(14 \rightarrow -9\)[/tex]
- [tex]\(0 \rightarrow 9\)[/tex]
- [tex]\(-9 \rightarrow 14\)[/tex]
Here, the first element 0 appears twice with different outputs: [tex]\(0 \rightarrow -9\)[/tex] and [tex]\(0 \rightarrow 9\)[/tex]. This means that this set does not represent a function because the input 0 is associated with two different outputs.
### Option C: [tex]\(\{(9, 14), (9, 4), (0, 0), (11, 16)\}\)[/tex]
- For each pair, we have:
- [tex]\(9 \rightarrow 14\)[/tex]
- [tex]\(9 \rightarrow 4\)[/tex]
- [tex]\(0 \rightarrow 0\)[/tex]
- [tex]\(11 \rightarrow 16\)[/tex]
Here, the first element 9 appears twice with different outputs: [tex]\(9 \rightarrow 14\)[/tex] and [tex]\(9 \rightarrow 4\)[/tex]. Thus, this set does not represent a function as the input 9 has multiple outputs.
### Option D: [tex]\(\{(-9, 9), (-9, 12), (-9, 0), (12, -9)\}\)[/tex]
- For each pair, we have:
- [tex]\(-9 \rightarrow 9\)[/tex]
- [tex]\(-9 \rightarrow 12\)[/tex]
- [tex]\(-9 \rightarrow 0\)[/tex]
- [tex]\(12 \rightarrow -9\)[/tex]
Here, the first element -9 appears three times with different outputs: [tex]\(-9 \rightarrow 9\)[/tex], [tex]\(-9 \rightarrow 12\)[/tex], and [tex]\(-9 \rightarrow 0\)[/tex]. This means that this set does not represent a function because the input -9 has three different outputs.
### Conclusion:
Based on the analysis, the only set that satisfies the condition of a function (each input having a unique output) is:
- Option A: [tex]\(\{(9, -9), (12, -9), (0, -9), (-9, 12)\}\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.