Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the angle of elevation of the sun, we'll follow these steps.
1. Understand the Given Information:
- Height of the pole: 7 meters.
- The length of the shadow is [tex]\( \frac{1}{2} \)[/tex] its height, so the shadow length is [tex]\( 2 \times 7 = 14 \)[/tex] meters.
2. Define the Scenario:
- We have a right triangle where:
- The height of the pole is one leg (opposite side of the angle).
- The length of the shadow is the other leg (adjacent side of the angle).
3. Calculate the Angle of Elevation:
- The angle of elevation ([tex]\(\theta\)[/tex]) can be found using the tangent function:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
So in our case:
[tex]\[ \tan(\theta) = \frac{7}{14} \][/tex]
4. Compute the Tangent Value:
- Simplifying,
[tex]\[ \tan(\theta) = \frac{7}{14} = 0.5 \][/tex]
5. Determine the Angle Using Inverse Tangent:
- To find [tex]\(\theta\)[/tex], we use the inverse tangent (arctan) function:
[tex]\[ \theta = \tan^{-1}(0.5) \][/tex]
6. Convert the Angle from Radians to Degrees:
- When [tex]\(\theta\)[/tex] is calculated, it is typically in radians. To convert it to degrees, we use the conversion ratio [tex]\( \frac{180}{\pi} \)[/tex]:
[tex]\[ \theta \approx 26.56505117707799 \text{ degrees} \][/tex]
7. Round to the Nearest Degree:
- Finally, we round [tex]\( 26.56505117707799 \)[/tex] to the nearest integer:
[tex]\[ \theta \approx 27 \text{ degrees} \][/tex]
Thus, the angle of elevation of the sun is approximately [tex]\( 27 \)[/tex] degrees, correct to the nearest degree.
1. Understand the Given Information:
- Height of the pole: 7 meters.
- The length of the shadow is [tex]\( \frac{1}{2} \)[/tex] its height, so the shadow length is [tex]\( 2 \times 7 = 14 \)[/tex] meters.
2. Define the Scenario:
- We have a right triangle where:
- The height of the pole is one leg (opposite side of the angle).
- The length of the shadow is the other leg (adjacent side of the angle).
3. Calculate the Angle of Elevation:
- The angle of elevation ([tex]\(\theta\)[/tex]) can be found using the tangent function:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
So in our case:
[tex]\[ \tan(\theta) = \frac{7}{14} \][/tex]
4. Compute the Tangent Value:
- Simplifying,
[tex]\[ \tan(\theta) = \frac{7}{14} = 0.5 \][/tex]
5. Determine the Angle Using Inverse Tangent:
- To find [tex]\(\theta\)[/tex], we use the inverse tangent (arctan) function:
[tex]\[ \theta = \tan^{-1}(0.5) \][/tex]
6. Convert the Angle from Radians to Degrees:
- When [tex]\(\theta\)[/tex] is calculated, it is typically in radians. To convert it to degrees, we use the conversion ratio [tex]\( \frac{180}{\pi} \)[/tex]:
[tex]\[ \theta \approx 26.56505117707799 \text{ degrees} \][/tex]
7. Round to the Nearest Degree:
- Finally, we round [tex]\( 26.56505117707799 \)[/tex] to the nearest integer:
[tex]\[ \theta \approx 27 \text{ degrees} \][/tex]
Thus, the angle of elevation of the sun is approximately [tex]\( 27 \)[/tex] degrees, correct to the nearest degree.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.