Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the length of one leg in a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle when the hypotenuse is given, follow these steps:
1. Understand the properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle:
- This type of triangle is an isosceles right triangle, where the two legs are of equal length.
- The relationship between the hypotenuse and each leg in such a triangle is given by the formula:
[tex]\[ \text{Hypotenuse} = \text{Leg} \times \sqrt{2} \][/tex]
- Therefore, the leg can be found by rearranging this formula:
[tex]\[ \text{Leg} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
2. Substitute the given hypotenuse length into the formula:
- The hypotenuse length is given as 18 cm.
[tex]\[ \text{Leg} = \frac{18 \, \text{cm}}{\sqrt{2}} \][/tex]
3. Simplify the expression:
- To simplify this expression, we can multiply the numerator and denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ \text{Leg} = \frac{18 \, \text{cm}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{18 \sqrt{2} \, \text{cm}}{2} = 9 \sqrt{2} \, \text{cm} \][/tex]
4. Evaluate the numerical value (if needed):
- This simplifies the calculation to:
[tex]\[ \text{Leg} = 12.727922061357855 \, \text{cm} \][/tex]
Hence, the length of one leg of the [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, given a hypotenuse of 18 cm, is [tex]\( 12.727922061357855 \, \text{cm} \)[/tex].
Therefore, the correct answer choices are:
- To the exact form: [tex]\( 9\sqrt{2} \, \text{cm} \)[/tex]
- To the decimal form: [tex]\( 12.727922061357855 \, \text{cm} \)[/tex]
But based on the value given in the question options, the correct form would be:
[tex]\[ 9\sqrt{2} \, \text{cm} \][/tex]
1. Understand the properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle:
- This type of triangle is an isosceles right triangle, where the two legs are of equal length.
- The relationship between the hypotenuse and each leg in such a triangle is given by the formula:
[tex]\[ \text{Hypotenuse} = \text{Leg} \times \sqrt{2} \][/tex]
- Therefore, the leg can be found by rearranging this formula:
[tex]\[ \text{Leg} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
2. Substitute the given hypotenuse length into the formula:
- The hypotenuse length is given as 18 cm.
[tex]\[ \text{Leg} = \frac{18 \, \text{cm}}{\sqrt{2}} \][/tex]
3. Simplify the expression:
- To simplify this expression, we can multiply the numerator and denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ \text{Leg} = \frac{18 \, \text{cm}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{18 \sqrt{2} \, \text{cm}}{2} = 9 \sqrt{2} \, \text{cm} \][/tex]
4. Evaluate the numerical value (if needed):
- This simplifies the calculation to:
[tex]\[ \text{Leg} = 12.727922061357855 \, \text{cm} \][/tex]
Hence, the length of one leg of the [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, given a hypotenuse of 18 cm, is [tex]\( 12.727922061357855 \, \text{cm} \)[/tex].
Therefore, the correct answer choices are:
- To the exact form: [tex]\( 9\sqrt{2} \, \text{cm} \)[/tex]
- To the decimal form: [tex]\( 12.727922061357855 \, \text{cm} \)[/tex]
But based on the value given in the question options, the correct form would be:
[tex]\[ 9\sqrt{2} \, \text{cm} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.