Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given equation:
[tex]\[ \log_6(4x^2) - \log_6(x) = 2 \][/tex]
we can use properties of logarithms to simplify and solve for [tex]\( x \)[/tex]. Follow these steps:
1. Apply the properties of logarithms: Use the property that [tex]\( \log_b(A) - \log_b(B) = \log_b\left(\frac{A}{B}\right) \)[/tex].
[tex]\[ \log_6(4x^2) - \log_6(x) = \log_6\left(\frac{4x^2}{x}\right) \][/tex]
2. Simplify the argument of the logarithm:
[tex]\[ \frac{4x^2}{x} = 4x \][/tex]
So the equation becomes:
[tex]\[ \log_6(4x) = 2 \][/tex]
3. Convert the logarithmic equation to an exponential equation: Use the property that if [tex]\( \log_b(A) = C \)[/tex], then [tex]\( b^C = A \)[/tex].
[tex]\[ 6^2 = 4x \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 36 = 4x \][/tex]
[tex]\[ x = \frac{36}{4} \][/tex]
[tex]\[ x = 9 \][/tex]
Hence, the solution to the equation [tex]\(\log_6(4x^2) - \log_6(x) = 2\)[/tex] is:
[tex]\[ \boxed{9} \][/tex]
[tex]\[ \log_6(4x^2) - \log_6(x) = 2 \][/tex]
we can use properties of logarithms to simplify and solve for [tex]\( x \)[/tex]. Follow these steps:
1. Apply the properties of logarithms: Use the property that [tex]\( \log_b(A) - \log_b(B) = \log_b\left(\frac{A}{B}\right) \)[/tex].
[tex]\[ \log_6(4x^2) - \log_6(x) = \log_6\left(\frac{4x^2}{x}\right) \][/tex]
2. Simplify the argument of the logarithm:
[tex]\[ \frac{4x^2}{x} = 4x \][/tex]
So the equation becomes:
[tex]\[ \log_6(4x) = 2 \][/tex]
3. Convert the logarithmic equation to an exponential equation: Use the property that if [tex]\( \log_b(A) = C \)[/tex], then [tex]\( b^C = A \)[/tex].
[tex]\[ 6^2 = 4x \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 36 = 4x \][/tex]
[tex]\[ x = \frac{36}{4} \][/tex]
[tex]\[ x = 9 \][/tex]
Hence, the solution to the equation [tex]\(\log_6(4x^2) - \log_6(x) = 2\)[/tex] is:
[tex]\[ \boxed{9} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.