Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the length of one leg of a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle with a given hypotenuse, we need to use the properties of this special triangle.
In a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are of equal length. If we denote the leg length by [tex]\( x \)[/tex], then the relationship between the legs and the hypotenuse [tex]\( h \)[/tex] is given by the formula:
[tex]\[ h = x \sqrt{2} \][/tex]
Given that the hypotenuse [tex]\( h \)[/tex] is 18 cm, we can set up the following equation:
[tex]\[ 18 = x \sqrt{2} \][/tex]
To solve for [tex]\( x \)[/tex], we isolate [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18}{\sqrt{2}} \][/tex]
Next, to rationalize the denominator, we multiply the numerator and the denominator by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18 \sqrt{2}}{2} \][/tex]
This simplifies to:
[tex]\[ x = 9 \sqrt{2} \][/tex]
Thus, the length of one leg of the [tex]\( 45^{\circ}-45^{\circ}-90^{\circ} \)[/tex] triangle is [tex]\( 9 \sqrt{2} \)[/tex] cm. Therefore, the correct answer is:
[tex]\[ 9 \sqrt{2} \text{ cm} \][/tex]
In a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are of equal length. If we denote the leg length by [tex]\( x \)[/tex], then the relationship between the legs and the hypotenuse [tex]\( h \)[/tex] is given by the formula:
[tex]\[ h = x \sqrt{2} \][/tex]
Given that the hypotenuse [tex]\( h \)[/tex] is 18 cm, we can set up the following equation:
[tex]\[ 18 = x \sqrt{2} \][/tex]
To solve for [tex]\( x \)[/tex], we isolate [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18}{\sqrt{2}} \][/tex]
Next, to rationalize the denominator, we multiply the numerator and the denominator by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18 \sqrt{2}}{2} \][/tex]
This simplifies to:
[tex]\[ x = 9 \sqrt{2} \][/tex]
Thus, the length of one leg of the [tex]\( 45^{\circ}-45^{\circ}-90^{\circ} \)[/tex] triangle is [tex]\( 9 \sqrt{2} \)[/tex] cm. Therefore, the correct answer is:
[tex]\[ 9 \sqrt{2} \text{ cm} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.