Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the length of one leg of a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle with a given hypotenuse, we need to use the properties of this special triangle.
In a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are of equal length. If we denote the leg length by [tex]\( x \)[/tex], then the relationship between the legs and the hypotenuse [tex]\( h \)[/tex] is given by the formula:
[tex]\[ h = x \sqrt{2} \][/tex]
Given that the hypotenuse [tex]\( h \)[/tex] is 18 cm, we can set up the following equation:
[tex]\[ 18 = x \sqrt{2} \][/tex]
To solve for [tex]\( x \)[/tex], we isolate [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18}{\sqrt{2}} \][/tex]
Next, to rationalize the denominator, we multiply the numerator and the denominator by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18 \sqrt{2}}{2} \][/tex]
This simplifies to:
[tex]\[ x = 9 \sqrt{2} \][/tex]
Thus, the length of one leg of the [tex]\( 45^{\circ}-45^{\circ}-90^{\circ} \)[/tex] triangle is [tex]\( 9 \sqrt{2} \)[/tex] cm. Therefore, the correct answer is:
[tex]\[ 9 \sqrt{2} \text{ cm} \][/tex]
In a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle, the legs are of equal length. If we denote the leg length by [tex]\( x \)[/tex], then the relationship between the legs and the hypotenuse [tex]\( h \)[/tex] is given by the formula:
[tex]\[ h = x \sqrt{2} \][/tex]
Given that the hypotenuse [tex]\( h \)[/tex] is 18 cm, we can set up the following equation:
[tex]\[ 18 = x \sqrt{2} \][/tex]
To solve for [tex]\( x \)[/tex], we isolate [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18}{\sqrt{2}} \][/tex]
Next, to rationalize the denominator, we multiply the numerator and the denominator by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{18 \sqrt{2}}{2} \][/tex]
This simplifies to:
[tex]\[ x = 9 \sqrt{2} \][/tex]
Thus, the length of one leg of the [tex]\( 45^{\circ}-45^{\circ}-90^{\circ} \)[/tex] triangle is [tex]\( 9 \sqrt{2} \)[/tex] cm. Therefore, the correct answer is:
[tex]\[ 9 \sqrt{2} \text{ cm} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.