Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the value of [tex]\( k \)[/tex] for which the quadratic equation [tex]\((k-12) x^2 + 2(k-12)x + 2 = 0\)[/tex] has two real equal roots, we need to ensure that the discriminant of the quadratic equation is zero.
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. The discriminant ([tex]\( \Delta \)[/tex]) of this equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the given quadratic equation [tex]\((k-12)x^2 + 2(k-12)x + 2 = 0\)[/tex]:
1. Identify the coefficients:
- [tex]\( a = (k-12) \)[/tex]
- [tex]\( b = 2(k-12) \)[/tex]
- [tex]\( c = 2 \)[/tex]
2. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = [2(k-12)]^2 - 4[(k-12)] \cdot 2 \][/tex]
3. Simplify the terms inside the discriminant:
[tex]\[ \Delta = [2(k-12)]^2 - 8(k-12) \][/tex]
[tex]\[ \Delta = 4(k-12)^2 - 8(k-12) \][/tex]
4. For the roots to be real and equal, the discriminant must be zero:
[tex]\[ 4(k-12)^2 - 8(k-12) = 0 \][/tex]
5. Factor the equation:
[tex]\[ 4(k-12) [(k-12) - 2] = 0 \][/tex]
6. Set each factor to zero and solve for [tex]\( k \)[/tex]:
[tex]\[ 4(k-12) = 0 \quad \text{or} \quad (k-12) - 2 = 0 \][/tex]
For the first factor:
[tex]\[ k-12 = 0 \][/tex]
[tex]\[ k = 12 \][/tex]
For the second factor:
[tex]\[ k-12 - 2 = 0 \][/tex]
[tex]\[ k - 14 = 0 \][/tex]
[tex]\[ k = 14 \][/tex]
7. Therefore, there are two values of [tex]\( k \)[/tex] for which the quadratic equation has two real and equal roots:
[tex]\[ k = 12 \quad \text{and} \quad k = 14 \][/tex]
Thus, [tex]\( k = 12 \)[/tex] and [tex]\( k = 14 \)[/tex] are the values for which the quadratic equation [tex]\((k-12)x^2 + 2(k-12)x + 2 = 0\)[/tex] has two equal real roots.
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. The discriminant ([tex]\( \Delta \)[/tex]) of this equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the given quadratic equation [tex]\((k-12)x^2 + 2(k-12)x + 2 = 0\)[/tex]:
1. Identify the coefficients:
- [tex]\( a = (k-12) \)[/tex]
- [tex]\( b = 2(k-12) \)[/tex]
- [tex]\( c = 2 \)[/tex]
2. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = [2(k-12)]^2 - 4[(k-12)] \cdot 2 \][/tex]
3. Simplify the terms inside the discriminant:
[tex]\[ \Delta = [2(k-12)]^2 - 8(k-12) \][/tex]
[tex]\[ \Delta = 4(k-12)^2 - 8(k-12) \][/tex]
4. For the roots to be real and equal, the discriminant must be zero:
[tex]\[ 4(k-12)^2 - 8(k-12) = 0 \][/tex]
5. Factor the equation:
[tex]\[ 4(k-12) [(k-12) - 2] = 0 \][/tex]
6. Set each factor to zero and solve for [tex]\( k \)[/tex]:
[tex]\[ 4(k-12) = 0 \quad \text{or} \quad (k-12) - 2 = 0 \][/tex]
For the first factor:
[tex]\[ k-12 = 0 \][/tex]
[tex]\[ k = 12 \][/tex]
For the second factor:
[tex]\[ k-12 - 2 = 0 \][/tex]
[tex]\[ k - 14 = 0 \][/tex]
[tex]\[ k = 14 \][/tex]
7. Therefore, there are two values of [tex]\( k \)[/tex] for which the quadratic equation has two real and equal roots:
[tex]\[ k = 12 \quad \text{and} \quad k = 14 \][/tex]
Thus, [tex]\( k = 12 \)[/tex] and [tex]\( k = 14 \)[/tex] are the values for which the quadratic equation [tex]\((k-12)x^2 + 2(k-12)x + 2 = 0\)[/tex] has two equal real roots.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.