Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's go through the steps to solve the inequality [tex]\( 4(4v + 6) < 9v + 3 \)[/tex] step by step:
1. Distribute the 4 on the left side of the inequality:
[tex]\[ 4(4v + 6) < 9v + 3 \][/tex]
Distributing the 4, we get:
[tex]\[ 4 \cdot 4v + 4 \cdot 6 < 9v + 3 \][/tex]
Simplifying further:
[tex]\[ 16v + 24 < 9v + 3 \][/tex]
2. Move all terms involving [tex]\( v \)[/tex] to one side of the inequality:
To isolate [tex]\( v \)[/tex], subtract [tex]\( 9v \)[/tex] from both sides of the inequality:
[tex]\[ 16v + 24 - 9v < 9v + 3 - 9v \][/tex]
Simplifying this:
[tex]\[ 7v + 24 < 3 \][/tex]
3. Move all constant terms to the other side of the inequality:
Subtract 24 from both sides:
[tex]\[ 7v + 24 - 24 < 3 - 24 \][/tex]
Simplifying this:
[tex]\[ 7v < -21 \][/tex]
4. Solve for [tex]\( v \)[/tex]:
Divide both sides by 7:
[tex]\[ v < \frac{-21}{7} \][/tex]
Simplifying this:
[tex]\[ v < -3 \][/tex]
Therefore, the solution to the inequality [tex]\( 4(4v + 6) < 9v + 3 \)[/tex] is:
[tex]\[ v < -3 \][/tex]
1. Distribute the 4 on the left side of the inequality:
[tex]\[ 4(4v + 6) < 9v + 3 \][/tex]
Distributing the 4, we get:
[tex]\[ 4 \cdot 4v + 4 \cdot 6 < 9v + 3 \][/tex]
Simplifying further:
[tex]\[ 16v + 24 < 9v + 3 \][/tex]
2. Move all terms involving [tex]\( v \)[/tex] to one side of the inequality:
To isolate [tex]\( v \)[/tex], subtract [tex]\( 9v \)[/tex] from both sides of the inequality:
[tex]\[ 16v + 24 - 9v < 9v + 3 - 9v \][/tex]
Simplifying this:
[tex]\[ 7v + 24 < 3 \][/tex]
3. Move all constant terms to the other side of the inequality:
Subtract 24 from both sides:
[tex]\[ 7v + 24 - 24 < 3 - 24 \][/tex]
Simplifying this:
[tex]\[ 7v < -21 \][/tex]
4. Solve for [tex]\( v \)[/tex]:
Divide both sides by 7:
[tex]\[ v < \frac{-21}{7} \][/tex]
Simplifying this:
[tex]\[ v < -3 \][/tex]
Therefore, the solution to the inequality [tex]\( 4(4v + 6) < 9v + 3 \)[/tex] is:
[tex]\[ v < -3 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.