Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve this step-by-step.
1. Understand the given values:
- Object distance (u): 30.0 cm
- Image distance (v): 90.0 cm
2. Identify the lens formula:
The lens formula is given by:
[tex]\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \][/tex]
where:
- [tex]\( f \)[/tex] is the focal length,
- [tex]\( v \)[/tex] is the image distance,
- [tex]\( u \)[/tex] is the object distance.
3. Apply the sign convention:
In the lens formula, the object distance (u) is taken as negative for real objects. So, we need to convert the object distance to its negative value:
[tex]\[ u = -30.0 \text{ cm} \][/tex]
The image distance (v) for a real image formed by a converging lens is positive:
[tex]\[ v = 90.0 \text{ cm} \][/tex]
4. Substitute the values into the lens formula:
Let's substitute the values of [tex]\( u \)[/tex] and [tex]\( v \)[/tex] into the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{90.0} - \frac{1}{-30.0} \][/tex]
5. Simplify the equation:
Evaluate the reciprocal values:
[tex]\[ \frac{1}{v} = \frac{1}{90.0} = 0.0111 \text{ (approximately)} \][/tex]
[tex]\[ \frac{1}{u} = \frac{1}{-30.0} = -0.0333 \text{ (approximately)} \][/tex]
Now, substitute these back into the formula:
[tex]\[ \frac{1}{f} = 0.0111 - (-0.0333) \][/tex]
[tex]\[ \frac{1}{f} = 0.0111 + 0.0333 \][/tex]
[tex]\[ \frac{1}{f} = 0.0444 \][/tex]
6. Calculate the focal length (f):
To find [tex]\( f \)[/tex], take the reciprocal of the result:
[tex]\[ f = \frac{1}{0.0444} \][/tex]
Evaluating this gives:
[tex]\[ f \approx 22.5 \text{ cm} \][/tex]
So, the focal length of the converging lens is approximately 22.5 cm.
1. Understand the given values:
- Object distance (u): 30.0 cm
- Image distance (v): 90.0 cm
2. Identify the lens formula:
The lens formula is given by:
[tex]\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \][/tex]
where:
- [tex]\( f \)[/tex] is the focal length,
- [tex]\( v \)[/tex] is the image distance,
- [tex]\( u \)[/tex] is the object distance.
3. Apply the sign convention:
In the lens formula, the object distance (u) is taken as negative for real objects. So, we need to convert the object distance to its negative value:
[tex]\[ u = -30.0 \text{ cm} \][/tex]
The image distance (v) for a real image formed by a converging lens is positive:
[tex]\[ v = 90.0 \text{ cm} \][/tex]
4. Substitute the values into the lens formula:
Let's substitute the values of [tex]\( u \)[/tex] and [tex]\( v \)[/tex] into the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{90.0} - \frac{1}{-30.0} \][/tex]
5. Simplify the equation:
Evaluate the reciprocal values:
[tex]\[ \frac{1}{v} = \frac{1}{90.0} = 0.0111 \text{ (approximately)} \][/tex]
[tex]\[ \frac{1}{u} = \frac{1}{-30.0} = -0.0333 \text{ (approximately)} \][/tex]
Now, substitute these back into the formula:
[tex]\[ \frac{1}{f} = 0.0111 - (-0.0333) \][/tex]
[tex]\[ \frac{1}{f} = 0.0111 + 0.0333 \][/tex]
[tex]\[ \frac{1}{f} = 0.0444 \][/tex]
6. Calculate the focal length (f):
To find [tex]\( f \)[/tex], take the reciprocal of the result:
[tex]\[ f = \frac{1}{0.0444} \][/tex]
Evaluating this gives:
[tex]\[ f \approx 22.5 \text{ cm} \][/tex]
So, the focal length of the converging lens is approximately 22.5 cm.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.