Answered

Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Point M is the midpoint of segment KL. Point N is the midpoint of segment ML.

Point K is located at [tex]\((-7, -6)\)[/tex], and point L is located at [tex]\((1, 10)\)[/tex]. What are the coordinates of point N?

A. [tex]\((-1, 6)\)[/tex]

B. [tex]\((-2, 6)\)[/tex]

C. [tex]\((-5, -2)\)[/tex]

Sagot :

Let's find the coordinates of point M and point N step-by-step.

1. Coordinates of Points K and L:
- Point [tex]\( K \)[/tex] has coordinates (-7, -6).
- Point [tex]\( L \)[/tex] has coordinates (1, 10).

2. Finding the Midpoint M:
The midpoint [tex]\( M \)[/tex] of two points [tex]\( K(x_1, y_1) \)[/tex] and [tex]\( L(x_2, y_2) \)[/tex] can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Substituting the coordinates of [tex]\( K \)[/tex] and [tex]\( L \)[/tex]:
[tex]\[ M_x = \frac{-7 + 1}{2} = \frac{-6}{2} = -3 \][/tex]
[tex]\[ M_y = \frac{-6 + 10}{2} = \frac{4}{2} = 2 \][/tex]

Therefore, the coordinates of point [tex]\( M \)[/tex] are:
[tex]\[ M = (-3, 2) \][/tex]

3. Finding the Midpoint N:
The midpoint [tex]\( N \)[/tex] of two points [tex]\( M(x_1, y_1) \)[/tex] and [tex]\( L(x_2, y_2) \)[/tex] can be found using the midpoint formula again:
[tex]\[ N = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Using the coordinates of [tex]\( M \)[/tex] and [tex]\( L \)[/tex]:
[tex]\[ N_x = \frac{-3 + 1}{2} = \frac{-2}{2} = -1 \][/tex]
[tex]\[ N_y = \frac{2 + 10}{2} = \frac{12}{2} = 6 \][/tex]

Therefore, the coordinates of point [tex]\( N \)[/tex] are:
[tex]\[ N = (-1, 6) \][/tex]

So, the correct answer is:

A. [tex]\((-1, 6)\)[/tex]