Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Step-by-step explanation:
To determine the number of possible four-letter sets for television and radio stations, let's break down the problem.
1. **First Letter:**
 - The first letter must be either \( W \) or \( K \).
 - This gives us 2 choices for the first letter.
2. **Second, Third, and Fourth Letters:**
 - These letters must be from \( L \) to \( Z \), inclusive.
 - The number of letters from \( L \) to \( Z \) is \( 26 - 11 = 15 \) (since \( L \) is the 12th letter and \( Z \) is the 26th letter, the range from \( L \) to \( Z \) includes 15 letters).
3. **No Repetitions:**
 - Since there are no repetitions allowed in the second to fourth letters, we need to count the permutations of 3 letters out of these 15.
The number of ways to choose and arrange 3 letters out of 15 (permutations) is given by \( P(15, 3) \), which can be calculated as:
\[
P(15, 3) = 15 \times 14 \times 13
\]
Now, multiply this by the 2 choices for the first letter:
\[
2 \times (15 \times 14 \times 13)
\]
Let's calculate this step by step:
1. Calculate the number of permutations for the second to fourth letters:
\[
15 \times 14 = 210
\]
\[
210 \times 13 = 2730
\]
2. Multiply by the 2 choices for the first letter:
\[
2 \times 2730 = 5460
\]
Thus, the number of possible four-letter sets is \( 5460 \).
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.